izpis_h1_title_alt

Nonequilibrium statistical physics in discrete space-time
ID Krajnik, Žiga (Avtor), ID Prosen, Tomaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (22,55 MB)
MD5: 60BA493FF38FA4D6BFA4C5F00452F364

Izvleček
We study the equilibrium and non-equilibrium statistical properties of interacting many-body systems, focusing on classical integrable models in one spatial dimensions. While integrability allows one to solve the initial value problem for a nonlinear system, the averaging over ensembles of initial conditions, implicit in a statistical description, is analytically intractable. Even numerical simulations of integrable systems are delicate since direct discretization invariably break integrability. By embedding an integrable system as a compatibility condition of a pair of linear problems, we instead define families of classical integrable system on a discrete space-time lattice, whose limits are Hamiltonian lattice/field-theory integrable models and facilitate their efficient numerical simulations. We solve the initial value problem of a model in discrete space-time by using the inverse scattering transform and formulate its thermodynamics within the soliton gas approximation. By using the defined integrable discretization, we study spin transport in the anisotropic lattice Landau–Lifshitz model. In integrable spin chains with non-abelian symmetry we find spin superdiffusion with the scaling function of the Kardar-Parisi-Zhang universality class. A refined view of dynamics is given by full-counting statistics of conserved quantities. We introduce the class of charged single-file systems and demonstrate their dynamical universality which we study in detail. We detect robust signs of dynamical criticality in the anisotropic lattice Landau–Lifshitz model and find an unexpected connection with charged single-file systems.

Jezik:Angleški jezik
Ključne besede:classical integrability, discrete space-time, inverse scattering method, soliton gas, spin transport, superdiffusion, full-counting statistics, charged single-file dynamics, dynamical criticality, anomalous spin dynamics
Vrsta gradiva:Doktorsko delo/naloga
Tipologija:2.08 - Doktorska disertacija
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2023
PID:20.500.12556/RUL-148491 Povezava se odpre v novem oknu
COBISS.SI-ID:162696195 Povezava se odpre v novem oknu
Datum objave v RUL:25.08.2023
Število ogledov:1380
Število prenosov:276
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Neravnovesna statistična fizika v diskretnem prostor-času
Izvleček:
Študiramo ravnovesne in neravnovesne statistične lastnosti sklopljenih mnogo-delčnih sistemov, kjer se osredotočimo na klasične integrabilne sisteme v eni prostorski dimenziji. Kljub temu, da integrabilnost omogoča ekzaktno rešitev začetnega problema za nelinearen sistem je povprečenje po začetnih pogojih analitično nedostopno. Celo numerične simulaticje integrabilnih sistemov so delikatne, saj direktne diskretizacije zlomijo integrabilnost. Postopamo drugače in integrabilne sisteme zapišemo kot kompatibilnostni pogoj za par linearnih problemov. S tem definiramo družine klasičnih integrabilnih sistemov na diskretni prostorsko-časovni mreži, katerih limite so Hamiltonski integrabilini modeli, ki jih lahko učinkovito numerično simuliramo. Z uporabo metode inverznega sipanja rešimo začetni problem modela v diskretnem prostor-času in formuliramo termodinamiko modela v približku solitonskega plina. S pomočjo definiranih integrabilnih diskretizacij študiramo spinski transport v anizotropnem Landau–Lifshitzovem modelu na mreži. V integrabilnih spinskih verigah z neabelsko simetrijo je spinska dinamika superdifuzvna s skalirno funkcijo Kardar-Parisi-Zhangovega univerzalnostnega razreda. Podrobnejši opis dinamike nam omogoča statistika polnega štetja ohranjenih količin. Vpeljemo razred nabitih enovrstičnih sistemov in pokažemo, da je njihova dinamika univerzalna. V anizotropnem Landau–Lifshitzovem modelu na mreži zaznamo robustne znake dinamične kritičnosti in najdemo nepričakovano povezavo z nabiti enovrstičnimi sistemi.

Ključne besede:klasična integrabilnost, diskreten prostor-čas, metoda inverznega sipanja, solitonski plin, spinski transport, superdifuzija, statistika polnega štetja, nabite enovrstične dinamike, dinamična kritičnost, anomalna spinska dinamika

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj