izpis_h1_title_alt

Uporaba metod strojnega učenja za napovedovanje delniških donosov
ID Breskvar, Žan Mark (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,54 MB)
MD5: E00E6718347E676B3C1F40D5E778A9CE

Abstract
V diplomski nalogi smo raziskovali učinkovitost metod strojnega učenja, in sicer metodo naključnega gozda, ''gradient boosting'' in Lasso, pri napovedovanju mesečnih donosov indeksa S&P 500. Naša analiza je temeljila na različnih naborih podatkov, ki vključujejo tehnične, temeljne in ekonomske značilke. Ugotovili smo, da so se tehnični podatki izkazali za najkoristnejše, ekonomski pa so pokazali najslabše rezultate. Med uporabljenimi modeli je Lasso dosegel najboljše rezultate, medtem ko so bili rezultati metode naključnega gozda in ''gradient boosting'' primerljivi. Kljub temu, da napovedovanje donosov na podlagi različnih naborov podatkov ni dalo dobrih rezultatov, smo ugotovili, da je možno z uporabo dolgo-kratke strategije pravilno izbirati delnice, katerim bo cena padla in katerim narastla.

Language:Slovenian
Keywords:metode strojnega učenja, naključni gozd, ''gradient boosting'', Lasso, mesečni donosi, indeks S&P 500
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-148388 This link opens in a new window
COBISS.SI-ID:158274819 This link opens in a new window
Publication date in RUL:21.08.2023
Views:540
Downloads:51
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The use of machine learning methods in predicting stock returns
Abstract:
In this thesis, we investigated the effectiveness of machine learning methods, namely Random Forest, Gradient Boosting, and Lasso, in predicting the monthly returns of the S&P 500 index. Our analysis was based on various datasets that include technical, fundamental, and economic features. We found that technical data proved to be the most useful, while economic data showed the worst results. Among the used models, Lasso achieved the best results, while the results of the Random Forest and Gradient Boosting methods were comparable. Despite the fact that the prediction of returns based on different datasets did not yield good results, we found that it is possible to correctly select stocks for which the price will rise and fall using a long-short strategy.

Keywords:machine learning methods, random forest, gradient boosting, Lasso, monthly returns, S&P 500 index

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back