izpis_h1_title_alt

Ocenjevanje zanesljivosti napovedi pri ansambelskih metodah
ID Arhar, Anže (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (450,50 KB)
MD5: 7D20A4F6D4117AEBD6BCE444E3E754D0

Abstract
V diplomski nalogi smo se ukvarjali s področjem izboljšanja točnosti napovedi. Izkoriščali smo pojav spreminjanja variance občutljivostnih napovedi ansambelskih metod ob dodajanju spremenjenih primerov v učno množico. Za vsak testni primer smo izdelali večje število ansamblov, ki pri gradnji modelov uporabljajo naključnost vzorčenja iz učne množice, kot sta metoda bagging in naključni gozdovi. Z dodajanjem spremenjenih testnih primerov smo pridobili občutljivostne napovedi za vsak ansambel. Na podlagi variance občutljivostnih napovedi smo iskali spremembo prvotne napovedi, ki povzroči najboljše ujemanje z ansamblom (varianca napovedi je najmanjša). Preizkusili smo več različnih ansambelskih metod in več metod iskanja minimuma variance napovedi. Eksperimentalno smo dokazali, da pri parametrih, ki smo jih izbrali za evalvacijo, ne obstaja statistična razlika med prvotnimi in popravljenimi napovedmi. S popravljenimi napovedmi nam je uspelo zmanjšati interval zaupanja napovedi za 13 %.

Language:Slovenian
Keywords:napovedovanje, ocenjevanje zanesljivosti, ansambel, regresija, strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-148386 This link opens in a new window
COBISS.SI-ID:158608899 This link opens in a new window
Publication date in RUL:21.08.2023
Views:605
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Assessing the reliability of predictions of ensemble methods
Abstract:
In the diploma thesis, we dealt with the area of improving prediction accuracy. We took advantage of the phenomenon of changing variance of sensitivity predictions when adding modified examples to the training set of ensemble methods. For each test case, we created a larger number of ensembles that use random sampling from the training set, such as random forest and bagging methods to build models. By adding modified test cases we obtained sensitivity predictions for each ensemble. Based on the variance of the sensitivity predictions, we searched for a change to the original prediction that would result in the best match with the ensemble (the variance of the predictions would be the lowest). We tested several different ensemble methods and methods for finding the minimal prediction variance. We experimentally proved that no statistical difference exists between the original and corrected predictions for the parameters we chose for evaluation. We also managed to reduce the confidence interval of the prediction by 13 % with the revised predictions.

Keywords:prediction, reliability estimation, ensemble, regression, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back