izpis_h1_title_alt

Primerjava rezultatov razlicnih napovednih modelov delcev PM10 v srednji Evropi
ID Ločniškar, Tadej (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,38 MB)
MD5: 4532B26943A4CF52D90CB20D7D35D9F6

Abstract
Delci PM10 predstavljajo enega od glavnih onesnaževalcev zraka, kar ima številne negativne posledice na zdravje ljudi, okolje in podnebje. V okviru diplomskega dela smo poiskali več različnih kemijsko-transportnih modelov, ki se uporabljajo za napovedovanje delcev PM10 v različnih krajih po Evropi. Ovrednotili smo, kako se napovedane vrednosti primerjajo z izmerjenimi vrednostmi v Sloveniji. Želeli smo ovrednotiti, kateri model napove vrednosti najbližje izmerjenim oziroma kateri model najbolj natančno napoveduje preseganje mejne vrednosti. Zanimalo nas je tudi, kateri model najboljše napoveduje nenadna večja povečanja ali zmanjšanja koncentracij. Uporabili smo različne metrike. Zanimalo nas je tudi, ali določeni meteorološki pogoji vplivajo na natančnost napovedi, zato smo napake modelov modelirali z meteorološkimi parametri kot atributi za modele strojnega učenja.

Language:Slovenian
Keywords:napovedovanje, onesnaženost, primerjava
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-148336 This link opens in a new window
COBISS.SI-ID:163579907 This link opens in a new window
Publication date in RUL:17.08.2023
Views:889
Downloads:60
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of results from different PM10 prediction models in Central Europe
Abstract:
PM10 particles are one of the main air pollutants with many negative impacts on human health, the environment and the climate. As part of the thesis, we have searched for several different chemistry-transport models that are used to predict PM10 in different locations across Europe. We have evaluated how the predicted values compare with measured values in Slovenia. We wanted to evaluate which model predicts the values closest to the measured values, or which model predicts exceedances of the limit value most accurately. We were also interested in which model best predicts sudden large increases or decreases in concentrations. We used a variety of metrics. We were also interested in whether certain meteorological conditions affect the accuracy of the predictions, so we modelled model errors using meteorological parameters as attributes for machine learning models.

Keywords:prediction, pollution, Comparison

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back