Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Dimensionally-consistent equation discovery through probabilistic attribute grammars
ID
Brence, Jure
(
Avtor
),
ID
Džeroski, Sašo
(
Avtor
),
ID
Todorovski, Ljupčo
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(887,67 KB)
MD5: CDA3F14DF1AB142B1DD9ABD9201E7A99
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0020025523003705
Galerija slik
Izvleček
Equation discovery, also known as symbolic regression, is a machine learning task of inducing closed-form equations from data and background knowledge. The latter takes various forms. Domain-specific knowledge can constrain the space of candidate equations to those that make sense in the scientific or engineering domain of use. Cross-domain knowledge, on the other hand, imposes general rules for model acceptability, such as parsimony, understandability, or consistency of the equations with the dimensional units of the variables. In this paper, we propose using attribute grammars to ensure the induced equations' dimensional consistency. Attribute grammars are flexible enough to combine cross-domain knowledge on dimensional consistency with domain-specific knowledge expressed as a probabilistic context-free grammar. At the same time, we show that attribute grammars can be efficiently transformed into probabilistic context-free grammars for equation discovery with existing algorithms. Finally, we provide empirical evidence that attribute grammars ensuring dimensional consistency of equations can significantly improve the performance of equation discovery on the standard set of a hundred Feynman benchmarks.
Jezik:
Angleški jezik
Ključne besede:
equation discovery
,
symbolic regression
,
dimensional analysis
,
units of measurement
,
background knowledge
,
background information
,
computational scientific discovery
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
Str. 742-756
Številčenje:
Vol. 632
PID:
20.500.12556/RUL-148320-915b6af9-8f94-252b-de38-5ea24ece57b2
UDK:
004
ISSN pri članku:
1872-6291
DOI:
10.1016/j.ins.2023.03.073
COBISS.SI-ID:
151276803
Datum objave v RUL:
11.08.2023
Število ogledov:
789
Število prenosov:
45
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Information sciences
Založnik:
Elsevier
ISSN:
1872-6291
COBISS.SI-ID:
23178245
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0103
Naslov:
Tehnologije znanja
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
N2-0128
Naslov:
Avtomatizirana sinteza in analiza znanstvenih modelov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj