izpis_h1_title_alt

Cubic vertex-transitive graphs admitting automorphisms of large order
ID Potočnik, Primož (Author), ID Toledo, Micael (Author)

.pdfPDF - Presentation file, Download (918,61 KB)
MD5: 5F7658AEE7F88388C4F3027860C5E398
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s40840-023-01526-x This link opens in a new window

Abstract
A connected graph of order $n$ admitting a semiregular automorphism of order $n/k$ is called a $k$-multicirculant. Highly symmetric multicirculants of small valency have been extensively studied, and several classification results exist for cubic vertex- and arc-transitive multicirculants. In this paper, we study the broader class of cubic vertex-transitive graphs of order $n$ admitting an automorphism of order $n/3$ or larger that may not be semiregular. In particular, we show that any such graph is either a $k$-multicirculant for some $k \le 3$, or it belongs to an infinite family of graphs of girth $6$.

Language:English
Keywords:cubic vertex-transitive graphs, multicirculants, automorphisms of large order
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:33 str.
Numbering:Vol. 46, iss. 4, art. 133
PID:20.500.12556/RUL-148031 This link opens in a new window
UDC:519.1
ISSN on article:0126-6705
DOI:10.1007/s40840-023-01526-x This link opens in a new window
COBISS.SI-ID:155100675 This link opens in a new window
Publication date in RUL:26.07.2023
Views:1387
Downloads:40
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Bulletin of the Malaysian Mathematical Sciences Society
Shortened title:Bull. Malays. Math. Sci. Soc.
Publisher:Springer Nature, Malaysian Mathematical Sciences Society, Penerbit Universiti Sains Malaysia
ISSN:0126-6705
COBISS.SI-ID:515781657 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0294
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Funder:ARRS - Slovenian Research Agency
Project number:N1-0216
Name:Simetrije, negibnost in prožnost grafov

Funder:ARRS - Slovenian Research Agency
Funding programme:Young researchers

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back