Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Proper holomorphic maps in Euclidean spaces avoiding unbounded convex sets
ID
Drinovec-Drnovšek, Barbara
(
Author
),
ID
Forstnerič, Franc
(
Author
)
PDF - Presentation file,
Download
(429,87 KB)
MD5: 537D220A5346FF029BDAFFF8DC4C0327
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s12220-023-01222-z
Image galllery
Abstract
We show that if $E$ is a closed convex set in $\mathbb C^n$ ($n>1$) contained in a closed halfspace $H$ such that $E\cap bH$ is nonempty and bounded, then the concave domain $\Omega=\mathbb C^n\setminus E$ contains images of proper holomorphic maps $f : X \to \mathbb C^n$ from any Stein manifold $X$ of dimension $< n$, with approximation of a given map on closed compact subsets of $X$. If in addition $2 {\rm dim} X+1 \le n$ then $f$ can be chosen an embedding, and if $2 {\rm dim} X = n$, then it can be chosen an immersion. Under a stronger condition on $E$, we also obtain the interpolation property for such maps on closed complex subvarieties.
Language:
English
Keywords:
Stein manifolds
,
holomorphic embeddings
,
Oka manifold
,
minimal surfaces
,
convexity
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
22 str.
Numbering:
Vol. 33, iss. 6, art. 170
PID:
20.500.12556/RUL-147581
UDC:
517.5
ISSN on article:
1050-6926
DOI:
10.1007/s12220-023-01222-z
COBISS.SI-ID:
147026947
Publication date in RUL:
07.07.2023
Views:
837
Downloads:
69
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
The journal of geometric analysis
Shortened title:
J. geom. anal.
Publisher:
Springer Nature, Mathematica Josephina
ISSN:
1050-6926
COBISS.SI-ID:
30685696
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
Steinove mnogoterosti
,
holomorfne vložitve
,
Oka mnogoterosti
,
minimalne ploskve
,
konveksnost
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0291
Name:
Analiza in geometrija
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-3005
Name:
Kompleksna in geometrijska analiza
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0137
Name:
Nelinearni valovi in spektralna teorija
Funder:
EC - European Commission
Funding programme:
HE
Project number:
101053085
Name:
Holomorphic Partial Differential Relations
Acronym:
HPDR
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0237
Name:
Holomorfne parcialne diferencialne relacije
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back