Obesity and other metabolic diseases are a growing problem worldwide, usually because of an imbalance between energy intake and energy expenditure. This balance is maintained by various factors, including the products of the nuclear receptor gene Pparg and the genes of the transcription cofactor Ppargc1a and Ppargc1b. In this study, we performed an in silico analysis of single nucleotide polymorphisms (SNP) within the regulatory regions of these genes in polygenic selected lines of obese (F) and lean (L) mice by analyzing scientific publications, databases and bioinformatics tools. We examined SNPs in the regulatory regions that can affect various levels of gene expression such as regulatory elements alternative polyadenylation (APA), alternative splicing (AS), DNA methylation, microRNAs (miRNA) and post-translational modifications (PTM). We found differences in the number and biotype of SNPs in the Pparg (L = 0, F = 3), Ppargc1a (L = 631, F = 0), and Ppargc1b (L = 3, F = 140) genes between the two mouse lines. In regulatory elements (enhancers and promoters), SNPs were present in all three genes, namely Pparg of mouse line F (n = 1), Ppargc1a of mouse line L (n = 45) and Ppargc1b of mouse line F (n = 14). These findings suggest that differential expression in time, location and level of these genes between the F and L lines is possible, especially for the Ppargc1a gene of the L mouse line and the Ppargc1b gene of the F mouse line. The SNP (rs244748170) observed in the Ppargc1a gene of L mouse line overlaps with three clusters of alternative polyadenylation sites (PAS), but does not overlap with individual PAS within the clusters, indicating that it most likely does not affect regulation through APA. None of the SNPs in any of the mouse lines are present in regulatory regions of PTM, AS, DNA methylation, and binding sites of studied microRNA in adipose tissue. Additionally, we identified a missense SNP (rs265764749) of the Ppargc1a gene of the L mouse line that causes an amino acid substitution from arginine to cysteine at position 629 and could potentially disrupt the protein's structure, leading to changes in protein function, stability, and activity. Our results may help to explain the differences in body fat accretion between the two mouse lines, thus providing additional insights, directions and raising new questions in the understanding of the complex mechanism of obesity and leanness.
|