izpis_h1_title_alt

Bias-reduced estimators of conditional odds ratios in matched case-control studies with unmatched confounding
ID Blagus, Rok (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (570,98 KB)
MD5: AE817ACEA051436E9716BAEEC82EF543
URLURL - Izvorni URL, za dostop obiščite https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200133 Povezava se odpre v novem oknu

Izvleček
We study bias-reduced estimators of exponentially transformed parameters in general linear models (GLMs) and show how they can be used to obtain bias-reduced conditional (or unconditional) odds ratios in matched case-control studies. Two options are considered and compared: the explicit approach and the implicit approach. The implicit approach is based on the modified score function where bias-reduced estimates are obtained by using iterative procedures to solve the modified score equations. The explicit approach is shown to be a one-step approximation of this iterative procedure. To apply these approaches for the conditional analysis of matched case-control studies, with potentially unmatched confounding and with several exposures, we utilize the relation between the conditional likelihood and the likelihood of the unconditional logit binomial GLM for matched pairs and Cox partial likelihood for matched sets with appropriately setup data. The properties of the estimators are evaluated by using a large Monte Carlo simulation study and an illustration of a real dataset is shown. Researchers reporting the results on the exponentiated scale should use bias-reduced estimators since otherwise the effects can be under or overestimated, where the magnitude of the bias is especially large in studies with smaller sample sizes.

Jezik:Angleški jezik
Ključne besede:statistics, linear models, bias, bias correction, Cox proportional hazards model, data augmentation, logistic regression model, relative risk estimation
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:MF - Medicinska fakulteta
FŠ - Fakulteta za šport
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:17 str.
Številčenje:Vol. 65, iss. 4, art. 2200133
PID:20.500.12556/RUL-147377 Povezava se odpre v novem oknu
UDK:311
ISSN pri članku:1521-4036
DOI:10.1002/bimj.202200133 Povezava se odpre v novem oknu
COBISS.SI-ID:141664515 Povezava se odpre v novem oknu
Datum objave v RUL:03.07.2023
Število ogledov:858
Število prenosov:36
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Biometrical journal
Skrajšan naslov:Biom. j.
Založnik:Wiley
ISSN:1521-4036
COBISS.SI-ID:518615833 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:statistika, linearni modeli, pristranskost

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:N1-0035
Naslov:Izboljšanje napovedovanja redkih dogodkov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P3-0154
Naslov:Metodologija za analizo podatkov v medicini

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj