izpis_h1_title_alt

A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images
ID Philippi, Daniel (Avtor), ID Rothaus, Kai (Avtor), ID Castelli, Mauro (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,49 MB)
MD5: 2D0C4DF3B69CF8C5D9D253968B736DAD
URLURL - Izvorni URL, za dostop obiščite https://www.nature.com/articles/s41598-023-27616-1 Povezava se odpre v novem oknu

Izvleček
Neovascular age-related macular degeneration (nAMD) is one of the major causes of irreversible blindness and is characterized by accumulations of different lesions inside the retina. AMD biomarkers enable experts to grade the AMD and could be used for therapy prognosis and individualized treatment decisions. In particular, intra-retinal fluid (IRF), sub-retinal fluid (SRF), and pigment epithelium detachment (PED) are prominent biomarkers for grading neovascular AMD. Spectral-domain optical coherence tomography (SD-OCT) revolutionized nAMD early diagnosis by providing cross-sectional images of the retina. Automatic segmentation and quantification of IRF, SRF, and PED in SD-OCT images can be extremely useful for clinical decision-making. Despite the excellent performance of convolutional neural network (CNN)-based methods, the task still presents some challenges due to relevant variations in the location, size, shape, and texture of the lesions. This work adopts a transformer-based method to automatically segment retinal lesion from SD-OCT images and qualitatively and quantitatively evaluate its performance against CNN-based methods. The method combines the efficient long-range feature extraction and aggregation capabilities of Vision Transformers with data-efficient training of CNNs. The proposed method was tested on a private dataset containing 3842 2-dimensional SD-OCT retina images, manually labeled by experts of the Franziskus Eye-Center, Muenster. While one of the competitors presents a better performance in terms of Dice score, the proposed method is significantly less computationally expensive. Thus, future research will focus on the proposed network’s architecture to increase its segmentation performance while maintaining its computational efficiency.

Jezik:Angleški jezik
Ključne besede:neuroscience, informatics, models
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:14 str.
Številčenje:Vol. 13, art. 517
PID:20.500.12556/RUL-147241 Povezava se odpre v novem oknu
UDK:659.2:004
ISSN pri članku:2045-2322
DOI:10.1038/s41598-023-27616-1 Povezava se odpre v novem oknu
COBISS.SI-ID:139976707 Povezava se odpre v novem oknu
Datum objave v RUL:27.06.2023
Število ogledov:1137
Število prenosov:46
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Scientific reports
Skrajšan naslov:Sci. rep.
Založnik:Nature Publishing Group
ISSN:2045-2322
COBISS.SI-ID:18727432 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:kognitivna znanost, informatika, modeli

Projekti

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:UIDB/04152/2020

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj