izpis_h1_title_alt

Pomnilniški element na osnovi konfiguracije naboja za uporabo v krioračunalništvu
ID Mraz, Anže (Author), ID Mihailović, Dragan (Mentor) More about this mentor... This link opens in a new window, ID Lipovšek, Benjamin (Co-mentor)

.pdfPDF - Presentation file, Download (37,85 MB)
MD5: F6B1585687C278F276DFC4B1172213B0

Abstract
V tem delu se osredotočimo na raziskovanje različnih vidikov obratovanja konceptualno edinstvenega nevolatilnega pomnilniškega elementa na podlagi ureditve naboja (ang. charge configuration memory-CCM), ki temelji na preklapljanju med dvema uporovnima stanjema v materialu 1T-TaS2. Pokažemo izredno energijsko učinkovito (2.2 fJ/bit), ultrahitro (2 ps) in stabilno preklapljanje CCM elementov pri kriogenih temperaturah, kar naredi CCM element primeren za integracijo v krio- in kvantnih računalniških sistemih. Posvetimo se raziskovanju obratovalnih karakteristik, kot so hitrost in energijska učinkovitost pisanja, vdržljivost preklapljanja, časovni toplotni odziv, ter analiza kovinske kontaktne strukture. S pomočjo vrstičnega tunelskega mikroskopa (STM) raziščemo tudi, kako se elektronska ureditev v metastabilnem H stanju spreminja med delovanjem CCM elementa. Z analizo H stanja odkrijemo nastanek netrivialnih topoloških defektov (dislokacij) v domenski elektronski strukturi, ki varujejo mesoskopsko stanje pred zunanjimi vzbuditvami in so odgovorni za nevolatilnost CCM elementa. Poleg tega opazimo, da je dinamika izbrisa teh defektov povezana z makroskopsko spremembo upornosti med H in C stanjem. Raziščemo tudi morebitno implementacijo nevolatilnega CCM elementa v krioračunalniškem okolju s pomočjo superprevodnega ojačevalnega elementa 'nanocryotron' (nTron), ki temelji na preklapljanju med superprevodnim in uporovnim stanjem s pomočjo kontrolnih sunkov na osnovi kvantnega toka (ang. single flux quantum-SFQ). NTron lahko doseže več kot 10 kΩ izhodne impedance in več kot 1 V napetosti na izhodu, kar je zelo primerno za poganjanje CCM elementov v vzporedni vezavi. Novo hibridno napravo, ki vključuje CCM in nTron element v vzporedni vezavi, imenujemo 'parallelotron' oz. pTron. Preučimo funkcionalnosti hibridnih pTron naprav skozi numerične simulacije časovne dinamike in napetostno-tokovnih (V-I) karakteristik, ter z meritvami dejanskih naprav, ki kažejo na dobro ujemanje z numeričnimi izračuni in potrdijo pomnilniško delovanje pTron naprave. Pokažemo tudi učinkovitost branja trenutnega stanja pTron naprave, kjer je branje stanja z nizko upornostjo popolnoma brez izgub.

Language:Slovenian
Keywords:pomnilnik na podlagi konfiguracije naboja, CCM, 1T-TaS2, nevolatilnost, ultra-hiter pomnilnik, energijsko-učinkovit pomnilnik
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-147081 This link opens in a new window
COBISS.SI-ID:156850179 This link opens in a new window
Publication date in RUL:23.06.2023
Views:795
Downloads:77
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Charge configuration memory device for use in cryo computing
Abstract:
In this thesis we focus on investigation of different aspects of a conceptually unique non-volatile charge configuration memory (CCM) device based on resistive switching between different electronic states in 1T-TaS2 material. We find that CCM devices feature energy-efficient (2.2 fJ/bit) and ultrafast switching (2 ps), very good endurance and a straightforward design. They can operate at cryogenic temperatures, which makes them ideal for integration into emerging cryo-computing and other high-performance computing systems such as superconducting quantum computers, which are currently hindered by the absence of a suitable memory device. We explore energy efficiency scaling of the CCM device as a function of device size and data write time τW, as well as other parameters that have bearing on efficient device performance, such as potential interfacial layers in the electrical contact structure and heating effects during operation. We also microscopically examine the intricate domain wall network of the metastable H state in 1T-TaS2 material and observe its dynamics under applied current using a scanning tunnelling microscope (STM). We observe non-thermal formation of a topologically protected entangled network of dislocations interconnected by domain walls that leads to robustness of the metastable state to external perturbations, and provides non-volatile behaviour to the CCM device. By detailed modelling and analysis of the annihilation of the domain wall network we gain insight into the underlying physics of the metastable state and by extension the CCM device. We investigate a possible implementation of the non-volatile CCM device in a cryo computing environment by combining it in parallel with a superconducting amplifying nanocryotron (nTron) element, which can be driven by extremely small single-flux-quantum (SFQ) logic, while offering an excellent match to the CCM device in terms of output impedance, output voltage and operational speed. We examine this new hybrid ’parallelotron’ (pTron) device, comprising the CCM and nTron in parallel connection, through numerical calculations of time-dynamics and voltage-current characteristics, as well as experimentally, where preliminary results confirm the envisioned memory operation. The immediate challenges for advancing this technology lie in the co-fabrication of devices that combine 1T-TaS2 and superconducting SFQ-based technology. The inherent high energy efficiency and ultrahigh speed makes the pTron device an ideal memory for use in cryo computing and quantum computing peripheral devices.

Keywords:charge configuration memory, CCM, 1T-TaS2, non-volatility, ultrafast memory, energy-efficient memory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back