izpis_h1_title_alt

Avtomatska segmentacija maternice v 3D ultrazvočnih podatkih
ID BONEŠ, EVA (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,08 MB)
MD5: 8AA7FF62A81183490F3F9EB0723B81BA

Abstract
Magistrska naloga predstavlja metodo za avtomatsko segmentacijo maternic v 3D ultrazvočnih podatkih ter izdelavo referenčnega modela zdrave maternice. Delo je nastalo v okviru raziskave NURSE, katere cilj je določiti merila za normalno maternico ter ugotoviti morebitna odstopanja pri ženskah z neplodnostjo in spontanimi splavi. V tej nalogi so predstavljeni globoki nevronski model za avtomatsko segmentacijo maternic, ki dosega natančnost $0.899$ (Diceov koeficient), algoritem za poravnavo segmentiranih 3D modelov maternic ter vizualizacija povprečnega modela maternice. S to nalogo prav tako objavljamo javno podatkovno zbirko označenih volumetričnih ultrazvočnih posnetkov maternic. Predlagane metode in ugotovitve zagotavljajo dragocen vpogled v analizo oblike maternice in prispevajo k razvoju področja ginekologije.

Language:Slovenian
Keywords:ultrazvok, maternica, segmentacija, poravnava
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-147080 This link opens in a new window
ISBN:158061827
COBISS.SI-ID:158061827 This link opens in a new window
Publication date in RUL:22.06.2023
Views:726
Downloads:132
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic uterine segmentation in 3D ultrasound data
Abstract:
This master's thesis presents a method for the automatic segmentation of uteri in 3D ultrasound data and a reference model of a healthy uterus. The work is part of the NURSE research, which aims to determine the criteria for a normal uterus and identify possible deviations in women with infertility and repeated miscarriages. In this work, we present a deep neural model for the automatic segmentation of the uterus, which achieved a Dice score of 0.899, an algorithm for the alignment of segmented 3D shapes, and visualization of the average model of the uterus obtained with the presented methods. We will also publish a public database of annotated volumetric ultrasound data. The proposed methods and findings provide valuable insights into the analysis of uterine shape and contribute to the field of gynecology.

Keywords:ultrasound, uterus, segmentation, alignment

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back