Background The Western honeybee is an economically important species globally, but has been experiencing colony losses that lead to economical damage and decreased genetic variability. This situation is spurring additional interest in honeybee breeding and conservation programs. Stochastic simulators are essential tools for rapid and low-cost testing of breeding programs and methods, yet no existing simulator allows for a detailed simulation of honeybee populations. Here we describe SIMplyBee, a holistic simulator of honeybee populations and breeding programs. SIMplyBee is an R package and hence freely available for installation from CRAN
http://cran.r-project.org/package=SIMplyBee.
Implementation SIMplyBee builds upon the stochastic simulator AlphaSimR that simulates individuals with their corresponding genomes and quantitative genetic values. To enable honeybee-specific simulations, we extended AlphaSimR by developing classes for global simulation parameters, SimParamBee, for a honeybee colony, Colony, and multiple colonies, MultiColony. We also developed functions to address major honeybee specificities: honeybee genome, haplodiploid inheritance, social organisation, complementary sex determination, polyandry, colony events, and quantitative genetics at the individual- and colony-levels.
Results We describe its implementation for simulating a honeybee genome, creating a honeybee colony and its members, addressing haplodiploid inheritance and complementary sex determination, simulating colony events, creating and managing multiple colonies at the same time, and obtaining genomic data and honeybee quantitative genetics. Further documentation, available at
http://www.SIMplyBee.info, provides details on these operations and describes additional operations related to genomics, quantitative genetics, and other functionalities.
Discussion SIMplyBee is a holistic simulator of honeybee populations and breeding programs. It simulates individual honeybees with their genomes, colonies with colony events, and individual- and colony-level genetic and breeding values. Regarding the latter, SIMplyBee takes a user-defined function to combine individual- into colony-level values and hence allows for modeling any type of interaction within a colony. SIMplyBee provides a research platform for testing breeding and conservation strategies and their effect on future genetic gain and genetic variability. Future developments of SIMplyBee will focus on improving the simulation of honeybee genomes, optimizing the simulator’s performance, and including spatial awareness in mating functions and phenotype simulation. We invite the honeybee genetics and breeding community to join us in the future development of SIMplyBee.