In this master thesis, flameless combustion is assessed from a modelling standpoint. Flameless combustion received its name from the absence of a visible flame. Through the years, several different acronyms have been introduced, such as FLOX, MILD, CDC and HiTAC, which all cover the same process with slightly different definitions regarding the thermodynamic conditions. In the analysis of the current state of the art, we identified the main challenges arising in modelling of flameless combustion. Because of the intensive interaction between the chemical and mixing time scales, some of the assumptions in currently used combustion models and chemical kinetic mechanisms for conventional combustion are not appropriate for flameless combustion modelling. In this study, we analyzed different combustion models and chemical kinetic mechanisms currently in use for conventional combustion modelling. Several simulations were run with the EDC combustion model and two chemical kinetic mechanisms, namely a two-step global mechanism and a widely known detailed mechanism GRI Mech 3.0, with and without the use of a radiation model. Simulations were performed in a basic combustion chamber geometry, where a transition to flameless combustion was modelled step by step, by lowering oxygen mass fraction in air from 23 % to 6 %. From all of the models, the EDC with the use of the detailed mechanism, showed the best capabilities of reproducing flameless conditions. On the other hand, global mechanism was not able to reproduce flameless conditions. Meanwhile, the use of the radiation model had the biggest effect on the results at 9 % O2 mass fraction.
|