izpis_h1_title_alt

Detekcija oblike in optimizacija razreza vroče valjanih plošč
ID Mestek, Matej Kristjan (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window, ID Grm, Klemen (Comentor)

.pdfPDF - Presentation file, Download (14,10 MB)
MD5: 84F486E34DBD0E1CDE395F3242E4C88B

Abstract
V sledečem delu je predstavljen sistem računalniškega vida za optimizacijo odreza vroče valjanih jeklenih plošč na vročih škarjah znotraj obrata vroče valjarne. Izdelan sistem služi kot predstavitev delovanja takšnega sistema in kot orodje za pomoč pri odločanju operaterjev. V delu so najprej predstavljeni osnovni problem in zahteve, ki jim mora sistem zadostiti. Opisana so tudi sorodna dela in nekaj osnovnih segmentacijskih metod. Sledi pregled teoretičnih znanj računalniškega vida in konvolucijskih nevronskih mrež, ki so predpogoj za razumevanje izdelanega sistema. Podrobno so prikazane tudi uporabljene metode in algoritmi. Nato predstavimo uporabljeno strojno opremo, izdelan sistem in učenje sistema na realnih podatkih. Na koncu sta opisana delovanje sistema in uspešnost delovanja. Uspešnost delovanja je prikazano v dveh delih. V prvem predstavimo kvaliteto delovanja segmentacijskega modela, ki je ključnega pomena za dobro delovanje celotnega sistema, v drugem delu pa določimo končno kvaliteto delovanja celotnega sistema.

Language:Slovenian
Keywords:računalniški vid, konvolucijske nevronske mreže, U-net, optimizacija
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-146997 This link opens in a new window
COBISS.SI-ID:156557571 This link opens in a new window
Publication date in RUL:19.06.2023
Views:839
Downloads:99
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Shape Detection and Cut Optimization of Hot-Rolled Plates
Abstract:
In this thesis we present a computer vision system for the crop optimization of hot rolled steel plates in a hot rolling mill. The system is meant to demonstrate the workings of such a system and is used as a tool for operators in the decision making process. In the thesis, we first define the problem and working requirements of the system. We also show an overview of similar works in the field and describe some segmentation methods. Next, we give the basic theoretical knowledge of the used computer vision and convolutional neural network methods, necessary for understanding the workings of the system. The hardware, finished system and its training on real process data is shown next. In the last part, we present the final operation of the system and its performance. The performance is shown in two parts. In the first part, we present the performance of the segmentation model that is vital for the overall good operation of the whole system. In the second part, we show the final performance of the whole system.

Keywords:computer vision, convolutional neural networks, U-net, crop optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back