izpis_h1_title_alt

Razvoj kompozitnih katalizatorjev za razgradnjo lahkohlapnih organskih onesnažil v zraku
ID Žumbar, Tadej (Author), ID Novak Tušar, Nataša (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (15,76 MB)
MD5: 0D3A05FB88052E5397742C11785D6E9B

Abstract
Lahkohlapne organske spojine ( Volatile Organic Compounds - VOC), se v ozračje izločajo predvsem iz industrijskih procesov, prometa ter potrošniških produktov. VOC predstavljajo skupino primarnih onesnažil v zraku, ki pa vplivajo tudi na nastanek ozona v nižjih zračnih plasteh. Za odstranjevanje VOC iz stacionarnih virov se med drugim uporabljata tudi termični (500-800 oC) in katalitski postopek (sobna temperatura - 500 oC). Pri slednjem sta najbolj pogosta tipa katalizatorjev na osnovi žlahtnih kovin, kot so zlato, srebro, paladij in na osnovi oksidov ostalih prehodnih kovin. Katalitska aktivnost žlahtnih kovin je večja pri nižjih temperaturah (150-280 oC) v primerjavi z oksidi prehodnih kovin (280-450 oC), kar posledično vodi k nižjimi obratovalnim stroškom. Kljub temu pa njihove pomanjkljivosti, kot so cena, dostopnost, geografska razširjenost in nagnjenost k zastrupitvi, vodijo v hitro razvijajoče se področje razvoja katalizatorjev na osnovi prehodnih kovin in njihovih oksidov, katerih aktivnost bi se približala temperaturnemu razponu aktivnosti katalizatorjev z žlahtnimi kovinami. V doktorskem delu sem se osredotočil na proučevanje in razvoj kompozitnih katalizatorjev na osnovi bakrovega in železovega oksida na silikatnem in aluminatnem nosilcu in njihovo aktivnost pri oksidaciji toluena kot modelne VOC spojine. Ugotovil sem, da je za aktivnost Cu-Fe kompozitnega katalizatorja na silikatnem nosilcu zelo pomembno razmerje med obema aktivnima zvrstema, saj lahko v specifičnem molskem razmerju Cu/Fe pride do sinergije in s tem izboljšanja katalitske aktivnosti. V nadaljevanju sem opažen učinek želel doseči na cenovno ugodnejšem in zato aplikativno zanimivejšem aluminatnem nosilcu, pri čemer sem se najprej osredotočil na lastnosti in izvor slednjega. Ugotovil sem, da lastnosti in izvor nosilca vplivajo na aktivnost Cu-Fe/Al2O3 katalizatorja s specifičnim Cu/Fe razmerjem. Zaradi slednjega sem se poglobil v pripravo in vpliv različnih prekurzorjev aluminijevih oksidov in ugotovil, da slednji močno vplivajo na aktivnost Cu/Al2O3 katalizatorja. Na aktivnost močno vpliva tudi kristalna struktura nosilca, ki jo dosežemo z uporabo različnih prekurzorjev ter temperatur transformacije, saj lahko le-ta nastopa v več oblikah; od najmanj stabilne in široko uporabne γ- Al2O3 do termodinamsko najstabilnejše α-Al2O3. V nadaljevanju sem določil optimalno vsebnost CuO v Cu/Al2O3 katalizatorjih, ki je znašala 12 ut.%, ter zasledoval vpliv razmerja Fe/Al na aktivnost Cu-Fe/Al2O3 katalizatorja v reakciji oksidacije toluena kot modelnega VOC onesnažila. Pripravil sem različne kompozitne katalizatorje, katerih nosilci so različnih izvorov, pri čemer je v enem primeru prišlo do očitne izboljšave v aktivnosti kompozitnega Cu-Fe/Al2O3 katalizatorja. V nadaljevanju sem tako preučeval njegovo strukturo in poskušal pojasniti vzrok za razlike v aktivnosti in nastanek sinergijskega učinka med dvema kovinskima oksidoma in dotičnim nosilcem dawsonitnega izvora. Ugotovil sem, da prisotnost specifične vsebnosti Fe in Cuspojin (molski razmerji Fe/Al = 0,007in Cu/Al = 0,054) vodi do nastanka optimalne koncentracije Cu-O-Al in Fe-O-Al mostov, pri čemer se s porastom vsebnosti železovih zvrsti ali spremembo kristalne strukture nosilca, ter posledično najverjetneje tudi strukturne urejenosti in sprememb v mikrostrukturi katalizatorja, to razmerje spremeni, kar vodi do upada katalitske aktivnosti. Najaktivnejši katalizator, pripravljen v okviru doktorskega dela, tako izkazuje izboljšano katalitsko aktivnost oksidov prehodnih kovinskih oksidov bakra in železa na aluminatnem nosilcu v nižjem temperaturnem območju (200-380 °C) in sicer doseže 90 % konverzijo toluena pri 372 °C. V delu sem sistematično preučil vplive struktur in lastnosti različnih aluminijevih oksidov kot nosilcev za tovrstne katalizatorje, ter prikazal pomembnost priprave ali izbire ustreznega nosilca v katalitskih procesih Razumevanje delovanja omenjenega, cenovno ugodnega katalizatorja, ki sem ga pridobil skozi doktorsko delo in skupaj s soavtorji objavil v znanstvenih revijah, bo doprineslo kamen k mozaiku razumevanja priprave in delovanja teh katalizatorjev.

Language:Slovenian
Keywords:-
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2023
PID:20.500.12556/RUL-146759 This link opens in a new window
COBISS.SI-ID:158739203 This link opens in a new window
Publication date in RUL:12.06.2023
Views:568
Downloads:37
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of composite catalysts for decomposition of volatile organic pollutants in air
Abstract:
Volatile organic compounds (VOCs) are mainly released into the atmosphere from industrial processes, transportation, and consumer products. VOCs represent a group of primary pollutants that also contribute to the formation of ozone in the troposphere. Abatement techniques for reducing VOC emissions from stationary sources include thermal oxidation (500-800 °C) and catalytic processes (room temperature - 500 °C). The most commonly used catalysts for VOC abatement are based on precious metals, such as gold, silver, palladium or transition metals and their oxides. Precious metal catalysts exhibit higher catalytic activity at lower temperatures (150-280 °C) compared to transition metal oxide catalysts (280-450 °C), which leads to lower operating costs. However, their drawbacks, including high cost, low availability, geographical distribution, and susceptibility to poisoning, have led to a rapidly developing field of transition metal and metal oxide-based catalysts with higher activity in lower temperature range. This thesis is focusing on the development and study of composite bimetallic catalysts based on copper and iron oxides on a silicate and aluminate support and their performance in the oxidation of toluene in gas phase as a model VOC compound. The study showed that the Cu-Fe bimetallic catalyst's activity on a silicate support is strongly influenced by the ratio between the two metal oxides, and a synergistic effect is observed at a specific Cu/Fe molar ratio, leading to higher catalytic activity at lower temperatures. I wanted to achieve the observed effect on a aluminate carrier, which is more affordable and therefore more interesting for industrial use. To accomplish this, I first focused on the properties and origin of the aluminate support. I found that the properties and origin of the support significantly influence the activity of the Cu-Fe/Al2O3 catalyst with a specific Cu/Fe ratio. Therefore, I delved into the preparation and influence of various aluminium oxide precursors and observed a strong influence on the Cu/Al2O3 catalyst's activity. The activity is strongly influenced by the crystal structure of the support and the consequence it has on the structure, microstructure and surface of the catalyst. Different structures are achieved by using different precursors and transformation temperatures, as it can exist in several forms, from the thermodynamically least stable and widely used γ-Al2O3 to the most stable α-Al2O3. Next, I determined the optimal concentration of CuO in Cu/Al2O3 catalysts and investigated the influence of the Fe/Al ratio on the activity of Cu-Fe/Al2O3 in the oxidation reaction of toluene as a model VOC pollutant. I prepared various composite catalysts, the supports of which have different origins, and observed an obvious improvement in the activity of the Cu-Fe/Al2O3 composite catalyst. In that specific case, I studied the structure of this catalyst and attempted to explain the reasons for the enhanced activity and the emergence of a synergistic effect between Fe and Cu species and the respective carrier. I found that the presence of a specific amount of Fe and Cu (molar ratio Fe/Al = 0.007 and Cu/Al = 0.054) leads to the formation of an optimal concentration of Cu-O-Al and Fe-O-Al bridges, while an increase in iron oxide concentration or a change in the crystal structure of the support leads to a change in the ratio and consequently to a decrease in catalytic activity. The most active catalyst prepared within the framework of this work, shows improved catalytic activity for toluene oxidation in the lower temperature range of 200-380 °C, due to the synergistic effect of metal oxide-metal oxide and metal oxide-support interactions. Understanding the functioning of this catalyst lead to the development of a catalyst with increased activity. I systematically examined the effects of the structures and properties of different aluminium oxides as carriers for this type of catalysts, and I demonstrated the importance of preparing or choosing the appropriate carrier in catalytic processes.

Keywords:-

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back