izpis_h1_title_alt

Analiza razvejenosti genomov virusov RNA
ID Vaupotič, Domen (Author), ID Ziherl, Primož (Mentor) More about this mentor... This link opens in a new window, ID Rapoš Božič, Anže (Co-mentor)

.pdfPDF - Presentation file, Download (15,09 MB)
MD5: 9B1D862999C4D471B269ACFA17E291FA

Abstract
Strukturo dolgih molekul RNA, med katere sodijo tudi genomi virusov RNA, je eksperimentalno še zmeraj težko določiti, zato so za njihovo preučevanje neizogibne računske napovedi struktur. Napovedni algoritmi so sicer točnejši za krajše RNA, vendar omogočajo določanje razlik v strukturi razvejenosti in prostorske velikosti tudi med raznovrstnimi daljšimi RNA. Prav razvejenost strukture in prostorska kompaktnost pa pomembno vplivata na učinkovitost samosestavljanja virusov RNA. Osrednje vodilo dela je zato vprašanje, kako je globalna struktura RNA vsebovana v primarnem zaporedju. V delu predstavimo delovanje algoritmov za termodinamično napoved sekundarne strukture RNA in za statističnofizikalni opis uporabimo model razvejenega polimera. Analiziramo več kot 1700 genomov virusov RNA in na napovedanih strukturah izračunamo tipične topološke količine iz teorije grafov, s katerimi lahko ovrednotimo razvejenost in prostorsko kompaktnost strukture. Rezultate primerjamo z napovedmi za nabore naključnih zaporedij RNA, s čimer dobimo vpogled v morebitni evolucijski selekcijski pritisk, ki ohranja kompaktnost genomov ikozaedričnih virusov. Z dvema različnima pristopoma za naključno RNA ocenimo tudi skalirna eksponenta $\rho$ in $\varepsilon$, ki opisujeta skaliranje povprečne velikosti vej in povprečne dolžine poti v limiti velikih polimerov, ter pokažemo, da velja $\rho \simeq \varepsilon \approx 0.67$. Med vsemi znanimi modeli polimerov sta skalirna eksponenta naključne RNA najbližje modelu trirazsežnega samoizogibnega drevesa. Robustnost analize in izluščenih skalirnih eksponentov pokažemo z izbiro različnih naborov energijskih parametrov in naključnimi zaporedji z neenakomerno nukleotidno sestavo.

Language:Slovenian
Keywords:razvejeni polimeri, skalirni eksponenti, sekundarna struktura RNA, virusi RNA
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-146730 This link opens in a new window
COBISS.SI-ID:154959619 This link opens in a new window
Publication date in RUL:09.06.2023
Views:412
Downloads:76
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Branching analysis of viral RNA genomes
Abstract:
The structure of long RNA molecules, such as genomes of RNA viruses, cannot be reliably determined experimentally, and hence any study of it inevitably involves computational structure predictions. Although the prediction algorithms are more accurate for short RNAs, they can be used to compare the branching structure and spatial size between various long RNAs. Branching pattern and compactness are also the key determinants of RNA virus self-assembly. The main aim of the Thesis is to clarify how the global structure of RNA is encoded in its primary sequence. We explain the core ideas behind algorithms for thermodynamic prediction of secondary structure of RNA, and use branched polymers as a model to describe the RNA. We analyse more than 1700 viral RNA genomes, and use the predicted structures to calculate the graph-theoretical topological measures of compactness. Results are compared to the predictions for sets of random RNAs, which elucidates the presence of evolutionary pressure which keeps genomes of icosahedral viruses spatially compact. Furthermore, we use two different approaches on random RNAs to calculate their exponents $\rho$ and $\varepsilon$, which describe the scaling of average branch weights and average path lengths in large-size limit, and we show that $\rho \simeq \varepsilon \approx 0.67$. Compared to other models of polymers, the scaling exponents for random RNA are most compatible with those of three-dimensional self-avoiding trees. Finally, we assess the robustness of estimated scaling exponents by using different sets of energy parameters and random RNAs with non-uniform nucleotide compositions.

Keywords:branched polymers, scaling exponents, RNA secondary structure, RNA viruses

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back