izpis_h1_title_alt

The k-Partition Problem
ID Batakliev, Emil (Author), ID Robič, Borut (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (704,54 KB)
MD5: D0593DFF4BA307CF6A457EF1A91A6827

Abstract
In this thesis we will analyze the k-Partition Problem. Specifically, we will analyze the five best algorithms for solving the Partition Problem, after which we will analyze five new algorithms for solving the k-Partition Problem. Two of these algorithms will be my contribution towards both problems. After we have understood how each algorithm works, we will test them among each other in order to figure out which algorithm is the fastest and why. We will also consider each algorithm's accuracy, since some algorithms trade their speed for precision. There will be a total of 70 test cases used throughout the testing phase. Some test cases will be random, and others specifically used as difficult test cases in regards to certain algorithms. Finally, we will shed light on the difference between theory and practice, that is, to the algorithms time complexities and their execution time. The goal of the thesis is not to find the fastest algorithm, but rather to analyze each of the algorithms and understand which of them is best suited for a given situation.

Language:English
Keywords:array, algorithm, time complexity, space complexity
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-146398 This link opens in a new window
COBISS.SI-ID:154896899 This link opens in a new window
Publication date in RUL:30.05.2023
Views:591
Downloads:80
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Posplošeni problem razdelitve
Abstract:
V magisterskem delu bomo analizirali posplošeni problem razdelitve. Analizirali bomo pet najboljših algoritmov za reševanje problema razdelitve in pet novih algoritmov za reševanje posplošenega problema razdelitve. Dva izmed analiziranih algoritmov bosta prispevek k osnovnemu, pa tudi posplošenemu problemu razdelitve. Ko bomo razumeli, kako delujejo posamezni algoritmi, jih bomo testirali in paroma primerjali, da bi ugotovili, kateri je najhitrejši in zakaj. Upoštevali bomo tudi natančnost vsakega algoritma, saj nekateri algoritmi žrtvujejo svojo hitrost za natančnejšo rešitev. V fazi testiranja bo skupno uporabljenih 70 testnih primerov. Nekateri bodo naključni, nekateri pa specifično uporabljeni kot težki testni primeri za določene algoritme. Nazadnje bomo pokazali na razliko med teorijo in prakso; med asimptotično časovno zahtevnostjo algoritmov in njihovo dejansko hitrostjo (v praksi). Cilj diplomske naloge ni najti najhitrejši algoritem, temveč analizirati vsakega od algoritmov in razumeti, kateri algoritem je najboljši za posamezno situacijo.

Keywords:niz, algoritem, časovna zahtevnost, prostorska zahtevnost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back