izpis_h1_title_alt

Training artificial neural networks using substructuring techniques : application to joint identification
ID Korbar, Jure (Avtor), ID Ocepek, Domen (Avtor), ID Čepon, Gregor (Avtor), ID Boltežar, Miha (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,75 MB)
MD5: E374E4305B8AEB447E45B91A29EDE3D0
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0888327023003345 Povezava se odpre v novem oknu

Izvleček
The dynamic properties of assembled structures are governed by the substructure dynamics as well as the dynamics of the joints that are part of the assembly. It can be challenging to describe the physical interactions within the joints analytically, as slight modifications, such as static preload, temperature, etc. can lead to significant changes in the assembly’s dynamic properties. Therefore, characterizing the dynamic properties of joints typically involves experimental testing and subsequent model updating. In this paper, a machine-learning-based approach to joint identification is proposed that utilizes a physics-based computational model of the joint. The idea is to combine the computational model of the joint with dynamic substructuring techniques to train the machine-learning model. The flexibility of dynamic substructuring permits the enforcement of compatibility and equilibrium conditions between the component models from the experimental and numerical domains, facilitating the development of machine-learning models that can predict the dynamic properties of joints. The proposed approach provides an accurate data-driven method for joint identification in real structures, while reducing the number of measurements needed for the identification. The approach permits the identification of a full 12-DoF joint, enabling the coupling of 3D dynamic models of substructures. Compared to the standard decoupling approach, no spurious peaks are present in the reconstructed assembly response. The proposed approach is validated numerically and experimentally by reconstructing the assembly response and comparing the results with known assembly dynamics.

Jezik:Angleški jezik
Ključne besede:joint identification, dynamic substructuring, frequency-based substructuring, artificial neural networks, physics-based computational model
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:18 str.
Številčenje:Vol. 198, art. 110426
PID:20.500.12556/RUL-146352-0af4458e-56fa-33ce-03fe-f967c425657b Povezava se odpre v novem oknu
UDK:681.5:538.913
ISSN pri članku:1096-1216
DOI:10.1016/j.ymssp.2023.110426 Povezava se odpre v novem oknu
COBISS.SI-ID:153289219 Povezava se odpre v novem oknu
Datum objave v RUL:24.05.2023
Število ogledov:589
Število prenosov:117
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Mechanical systems and signal processing
Skrajšan naslov:Mech. syst. signal process.
Založnik:Elsevier
ISSN:1096-1216
COBISS.SI-ID:15296283 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:identifikacija spojev, dinamsko podstrukturiranje, frekvečno podstrukturiranje, nevronske mreže

Projekti

Financer:EC - European Commission
Program financ.:HE
Številka projekta:101091536
Naslov:Digitalised Value Management for Unlocking the potential of the Circular Manufacturing Systems with integrated digital solutions
Akronim:DiCiM

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj