izpis_h1_title_alt

Program za prepoznavo in razvrščaje zbirateljskih poštnih znamk
ID KRAŠOVEC, LOVRO (Author), ID Fajfar, Iztok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,10 MB)
MD5: 0013DC6E2A33261BA95D01312BE6BD15

Abstract
Cilj tega diplomskega dela je razviti program, ki lahko z visoko natančnostjo prepoznava in ločuje različne objekte na fotografijah. Natančneje, program bo izvajal analizo slikovnih podatkov, s čimer bo določal in označeval, katere fotografije vsebujejo poštno znamko in katere ne. Na ta način se bomo izognili prebiranju velikega števila fotografij. Naša aplikacija je zasnovana za uporabo v zbirateljskih krogih, kjer bo pomagala pri digitalizaciji zbirk in vanje omogočala dodajanje novih poštnih znamk. Poleg tega bo aplikacija spodbujala nove člane, da se pridružijo zbirateljski skupnosti in si tudi sami ustvarijo svoj album. Za izdelavo aplikacije smo si pomagali z obrisi objektov, saj vemo, da imajo poštne znamke značilno pravokotno obliko z valovitimi stranicami. Preden pa smo se lotili prepoznave, smo nad fotografijami izvedli nekaj transformacij – standardizirali smo njihovo velikost, jih posivili ter nad njimi izvedli filtriranje z mediano. Te transformacije znatno olajšajo delo prepoznave, in sicer brez velike izgube pomembnih informacij. Z namenom dodatne poenostavitve smo ustvarili pogoj, da morajo biti objekti fotografirani na ozadju nasprotnega kontrasta. Ta pogoj nam pride prav pri ločevanju predmetov in podlage. To pa je naslednji korak naše prepoznave. Ker vemo, da sta predmet in podlaga kontrastno ločena, lahko njune slikovne elemente s pravilno postavitvijo pragu razdelimo v dva razreda. Elementi teh razredov tvorijo območja. Njihove obrise pa pridobimo z upoštevanjem pravil za sledenje tem območjem. Iz ene same fotografije lahko na ta način pridobimo množico različnih obrisov. Osredotočili se bomo le na tistega, ki objema največje število slikovnih elementov. Odločitev o prisotnosti poštne znamke na fotografiji bo program sprejel s primerjanjem obrisa objekta z obrisi objektov učne množice. Trenutna oblika njihovega zapisa pa nam to delo močno otežuje. Za rešitev teh težav smo s pomočjo serije matematičnih transformacij obrise pretvorili v računalniku prijaznejšo obliko. Rezultat je seznam vektorjev, katerih velikosti in smeri predstavljajo obliko izbranega obrisa. Z njihovo pomočjo je primerjava obrisa z učno množico postala veliko enostavnejša. Za pravilno delovanje programa se mora uporabnik držati strogih pravil, ki so pomembna za dosego želenih rezultatov. Želimo pa si, da bi bila uporaba aplikacije nadvse enostavna. V ta namen lahko uporabimo naprednejšo metodo prepoznavanja, kot je računalniški vid, ki temelji na umetni inteligenci in uporablja nevronske mreže. Za razumevanje njegovega delovanja smo se spoznali z idejami, kot so parametrični modeli, linearna klasifikacija, funkcija izgub in gradientni spust. Učenje takšne programske opreme poteka s pomočjo označevanja fotografij. V tem procesu smo na vsaki fotografiji poiskali želene objekte in jih ustrezno označili. Nato smo fotografije uporabili za učenje programa. Po primerjanju rezultatov prepoznave obrisov z rezultati računalniškega vida smo ugotovili, da so slednji zelo obetavni, a kljub vsemu še niso primerni za našo uporabo. Z dodatnim učenjem bi računalniški vid lahko uporabili v naši aplikaciji, s čimer bi se znebili nadležnih pogojev uporabe in dodatno izboljšali uporabniško izkušnjo, vendar se tega dela v sklopu diplomske naloge nismo lotili.

Language:Slovenian
Keywords:segmentacija, frekvenčni prostor, mera podobnosti, uporabniška izkušnja, podatkovna baza, komunikacija, računalniški vid
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-145595 This link opens in a new window
COBISS.SI-ID:150369539 This link opens in a new window
Publication date in RUL:24.04.2023
Views:669
Downloads:114
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The program for recognition and classification of collector's postage stamps
Abstract:
The aim of this thesis is to develop a program that can accurately identify and distinguish various objects in photographs. Specifically, the program will analyze image data to determine and label which photos contain postage stamps and which do not, thereby avoiding the need to manually search through a large number of photos. Our application is designed for use in collecting circles, where it will assist in digitizing collections and adding new postage stamps. Additionally, the application will encourage new members to join the collecting community and create their own albums. To create the application, we utilized object outlines, as postage stamps have a characteristic rectangular shape with wavy edges. Before identifying the stamps, we performed several transformations on the photos: standardizing their size, graying them out, and applying a median filter. These transformations significantly simplified the identification process without losing important information. To further simplify the process, we created a condition that the objects must be photographed against a contrasting background. This condition helps to separate the objects from the background, which is the next step in our identification process. Since we know that the object and background are contrasted, we can divide their image elements into two classes by properly setting the threshold. The elements of these classes form regions, and we obtain their outlines by following the rules for tracking these regions. In this way, we can obtain a multitude of different outlines from a single photograph. However, we will focus only on the one that encompasses the largest number of image elements. The program will determine the presence of a postage stamp in the photo by comparing the outline of the object with those in the training set. However, the current format of their recording makes this task difficult. To solve these problems, we transformed the outlines into a computer-friendly format using a series of mathematical transformations. The result is a list of vectors whose magnitudes and directions represent the shape of the selected outline. With their help, comparing the outline with the training set became much easier. To ensure the program works correctly, the user must follow strict rules that are important for achieving the desired results. However, we want the application to be extremely user-friendly. To this end, we can use more advanced methods of recognition, such as computer vision, which is based on artificial intelligence and uses neural networks. To understand how it works, we learned about ideas such as parametric models, linear classification, loss function, and gradient descent. Learning this software is done by labeling photographs. In this process, we searched each photograph for the desired objects and labeled them accordingly. We then used the photographs to train the program. After comparing the results of the outline recognition with those of computer vision, we found that the latter is very promising, but not yet suitable for our use. With additional training, computer vision could be used in our application, eliminating the annoying conditions of use and further improving the user experience. However, we did not tackle this aspect within the scope of our thesis.

Keywords:segmentation, frequency domain, similarity measure, user experience, database, communication, computer vision

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back