izpis_h1_title_alt

Analiza oblikovnih razlik med merjencem in pripadajočim modelom
ID HOLCER, ALEN (Author), ID Mihelj, Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Šlajpah, Sebastjan (Comentor)

.pdfPDF - Presentation file, Download (3,20 MB)
MD5: B316949BD41EE7C28C3B6CD5EC44A49B

Abstract
Danes v industriji vedno pogosteje uporabljamo robote in senzorje, ki nam omogočajo, da dosežemo stvari, ki prej niso bile mogoče. S pomočjo senzorjev lahko odkrivamo napake hitreje in natančneje odkrivamo kot s človeškim nadzorom, kar nam omogoča izboljšanje in povečanje učinkovitosti proizvodnje. To diplomsko delo predstavlja postopek izdelave programa, ki omogoča odkrivanje napak v modelih z izračunom razlike med dvema modeloma. Prvi model, ki ga uporabljamo v programu, je oblak točk, pridobljen s senzorjem Sick Trispector 1030, nameščenim na UR5e robotu. Drugi model pa je načrtni model CAD, ki predstavlja želeno obliko modela. Program smo razvili v programskem jeziku Python in z uporabo programa CloudCompare, ki omogoča manipulacijo in obdelavo oblaka točk. Pred uporabo dejanskega modela smo v programskem okolju Fusion 360 izdelali preizkusni model, da smo preverili delovanje programa. Narisali smo dva modela, ki sta se razlikovala za tri stopnice. Transformacije v prostoru so matematične operacije, ki spreminjajo pozicijo, orientacijo in velikost objektov v trirazsežnem prostoru. Pri prilagajanju modelov je pomembno, da oba modela (oblak točk in CAD model) izhajata iz istega koordinatnega sistema, saj ju le tako lahko primerjamo ter pridobimo medsebojne razlike. Za prilagajanje modelov uporabljamo različne vrste transformacij, kot so translacija, rotacija, skaliranje in zrcaljenje. Te transformacije lahko izračunamo na podlagi referenčnih točk, ki jih pridobimo s pomočjo Houghovega algoritma. Houghov algoritem nam omogoča zaznavanje geometrijskih oblik, kot so na primer krogi, v oblaku točk. Poleg transformacij v prostoru pa je za prilagajanje modelov pomembna tudi interpolacija, ki jo uporabimo za zapolnitev praznih točk v oblaku točk, pridobljenih iz senzorja. Interpolacija nam omogoča, da na podlagi sosednjih točk izračunamo vrednost manjkajoče točke in tako dobimo bolj celovit model. Glavni cilji diplomske naloge so: opisati osnove teorije delovanja transformacij med modeli, zasnovati sistem s pravilnim izračunom razlike med modeli in grafično prikazati razlike.

Language:Slovenian
Keywords:nadzor kakovosti, primerjava modelov, oblikovne razlike, oblak točk, robot, laserski skener
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-145311 This link opens in a new window
COBISS.SI-ID:150427139 This link opens in a new window
Publication date in RUL:17.04.2023
Views:653
Downloads:115
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of shape differences between measured object and its corresponding model
Abstract:
Today in industry, robots and sensors are increasingly being used, allowing us to achieve things that were previously not possible. With sensors, we can detect errors faster and more accurately than with human supervision, which enables us to improve and increase production efficiency. This thesis presents a process for creating a program that allows for the detection of errors in models by calculating the difference between two models. The first model used in the program is a point cloud obtained from the Sick Trispector 1030 sensor mounted on a UR5e robot. The second model is a deliberate CAD model representing the desired shape of the model. The program was developed in the Python programming language and using the CloudCompare program, which allows for the manipulation and processing of point clouds. Before using the actual model, we created a test model in the Fusion 360 to verify the program's operation. We drew two models that differed by three steps. Transformations in space are mathematical operations that change the position, orientation, and size of objects in three-dimensional space. When adapting models, it is important that both models (point cloud and CAD model) come from the same coordinate system, as this is the only way to compare them and get the differences between them. Different types of transformations, such as translation, rotation, scaling, and mirroring, are used to adapt models. These transformations can be calculated based on reference points obtained using the Hough algorithm. The Hough algorithm enables us to detect geometric shapes, such as circles, in a point cloud. In addition to transformations in space, interpolation is also important for adapting models. We use interpolation to fill in empty points in the point cloud obtained from the sensor. The main objectives of this thesis are to describe the basics of the theory of transformations between models, design a system with the correct calculation of differences between models, and graphically display the differences.

Keywords:quality control, model comparison, shape differences, point cloud, robot, laser scanner

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back