Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Machine learning-assisted non-destructive plasticizer identification and quantification in historical PVC objects based on IR spectroscopy
ID
Rijavec, Tjaša
(
Avtor
),
ID
Ribar, David
(
Avtor
),
ID
Markelj, Jernej
(
Avtor
),
ID
Strlič, Matija
(
Avtor
),
ID
Kralj Cigić, Irena
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,36 MB)
MD5: D979A9B74EF3F89AAE5F494195418125
URL - Izvorni URL, za dostop obiščite
https://www.nature.com/articles/s41598-022-08862-1
Galerija slik
Izvleček
Non-destructive spectroscopic analysis combined with machine learning rapidly provides information on the identity and content of plasticizers in PVC objects of heritage value. For the first time, a large and diverse collection of more than 100 PVC objects in different degradation stages and of diverse chemical compositions was analysed by chromatographic and spectroscopic techniques to create a dataset used to construct classification and regression models. Accounting for this variety makes the model more robust and reliable for the analysis of objects in museum collections. Six different machine learning classification algorithms were compared to determine the algorithm with the highest classification accuracy of the most common plasticizers, based solely on the spectroscopic data. A classification model capable of the identification of di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, diisononyl phthalate, diisodecyl phthalate, a mixture of diisononyl phthalate and diisodecyl phthalate, and unplasticized PVC was constructed. Additionally, regression models for quantification of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) terephthalate in PVC were built. This study of real-life objects demonstrates that classification and quantification of plasticizers in a general collection of degraded PVC objects is possible, providing valuable data to collection managers.
Jezik:
Angleški jezik
Ključne besede:
machine learning
,
plasticizer
,
PVC
,
IR spectroscopy
,
historical objects
,
analytical chemistry
,
computational methods
,
infrared spectroscopy
,
polymer chemistry
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FKKT - Fakulteta za kemijo in kemijsko tehnologijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2022
Št. strani:
11 str.
Številčenje:
Vol. 12, art. 5017
PID:
20.500.12556/RUL-145267
UDK:
543.42:004.85
ISSN pri članku:
2045-2322
DOI:
10.1038/s41598-022-08862-1
COBISS.SI-ID:
102113283
Datum objave v RUL:
14.04.2023
Število ogledov:
674
Število prenosov:
131
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Scientific reports
Skrajšan naslov:
Sci. rep.
Založnik:
Nature Publishing Group
ISSN:
2045-2322
COBISS.SI-ID:
18727432
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
mehčalo
,
PVC
,
IR spektroskopija
,
zgodovinski predmeti
Projekti
Financer:
EC - European Commission
Program financ.:
H2020
Številka projekta:
814496
Naslov:
Active & intelligent PAckaging materials and display cases as a tool for preventive conservation of Cultural HEritage
Akronim:
APACHE
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0153
Naslov:
Raziskave in razvoj analiznih metod in postopkov
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Smithsonian, Museum Conservation Institute
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Federal Trust Funds
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj