izpis_h1_title_alt

Modeliranje verjetnosti neplačila pri bančnih storitvah za prebivalstvo : magistrsko delo
ID Stanič, Rok (Avtor), ID Perman, Mihael (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (816,08 KB)
MD5: 073344B9A3FC2A09A5062ED20348C19A

Izvleček
Bančno poslovanje je povezano z neizogibnim faktorjem tveganja. Tveganje je negotovost dogodka, ki se lahko zgodi v prihodnosti, v primeru banke pa negotovost izida poslovnih naložb. Bančna tveganja so različna: strateško tveganje, tveganje skladnosti, kreditno tveganje, tveganje kibernetske varnosti, likvidnostno tveganje, tržno tveganje, operativno tveganje itd. Za poslovne banke predstavlja najpomembnejšo vrsto tveganja kreditno tveganje. Kreditno tveganje je tveganje, ki ga banka prevzame pri posojanju denarja posojilojemalcem. Posojilojemalci lahko ne poplačajo svojih dolgov, kar povzroči izgubo banki. Kreditno modeliranje je postopek priprave statističnega modela za napovedovanje verjetnosti neporavnanve obveznosti na podlagi zgodovinskih podatkov. V magistrskem delu smo predstavili tri različne pristope za razvoja modela za napovedovanje verjetnosti neplačila za bančne storitve za prebivalstvo. Bančne storitve za prebivalstvo sestavljajo potrošniški kredit, stanovanjski kredit in kreditne kartice. Dva izmed modelov temeljita na logistični regresiji, ki je najbolj popularna družina modelov na področju napovedovanja verjetnosti neplačila. Tretji pristop predstavlja izgradnjo modela na podlagi algoritma strojnega učenja naključnega gozda. Vse pristope smo opisali in predstavili njihove končne napovedne metrike. Modeli so bili pripravljeni in testirani na zgodovinskih podatkih Nove Ljubljanske banke. Algoritme smo implementirali v programskem jeziku Python na podlagi knjižnice Scikit-learn.

Jezik:Slovenski jezik
Ključne besede:logistična regresija, naključni gozd, verjetnost neporavnanja obveznosti, kreditno modeliranje
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2023
PID:20.500.12556/RUL-145143 Povezava se odpre v novem oknu
UDK:519.22
COBISS.SI-ID:148174339 Povezava se odpre v novem oknu
Datum objave v RUL:08.04.2023
Število ogledov:687
Število prenosov:89
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Modeling probability of default for banking services in retail
Izvleček:
Banking business is associated with risks, which is unavoidable. In the simplest terms, risk is the uncertainty of an event that may occur in the future and in the case of a bank, the uncertainty of the outcome, of business investments. Different types of banking risks can be classified as strategic risk, compliance risk, credit risk, cyber security risk, liquidity risk, market risk, operational risk, etc. Among these, credit risk represents the most important type of risk for commercial banks. Credit risk is simply understood as the risk that a bank assumes when lending money to borrowers. Borrowers may default on their debts, causing a loss to the bank. Credit modeling is the process of preparing a statistical model for predicting the probability of non-payment of liabilities based on historical data. In my masters thesis, I present three different approaches to the development of a model for predicting the probability of default for retail banking services. Banking services for the population consist of postal credit, housing credit and credit cards. Two of the models are based on logistic regression, which is the most popular family of models in the field of predicting the probability of default. The third approach represents building a model based on a random forest machine learning algorithm. We have described all approaches and presented their final predictive metrics. The models were prepared and tested on the historical data of Nova Ljubljanska banka d.d. We implemented the algorithms in the Python programming language based on the Scikit-learn library.

Ključne besede:logistic regression, random forrest, probability of default, credit modelling

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj