izpis_h1_title_alt

Abstrakcija oblik celičnih predelkov s pomočjo globokega učenja
ID ENOVA, KLEMEN JAN (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window, ID Žerovnik Mekuč, Manca (Comentor)

.pdfPDF - Presentation file, Download (4,18 MB)
MD5: 38B7921268206615A680D9C2448EDC32

Abstract
Celični predelki se lahko razlikujejo po morfologiji. Mitohondriji znotraj evkariontskih celic, na katere se bomo osredotočili v tem delu, so lahko razvejani ali pa se med seboj dotikajo. Končni cilj te diplomske naloge je klasifikacija morfologije mitohondrijev. Ker je iz surovih podatkov o obliki težko pridobiti predstavitev oblike, ki bi dobro opisala njeno morfologijo, smo se obrnili k abstrakciji oblik. Abstrakcija obliko opiše z majhnim številom geometrijskih primitivov. Ocenili smo tri metode abstrakcije oblik s pomočjo globokega učenja. Te se razlikujejo po tipu vhoda, načinu ocenjevanja kvalitete abstrakcije in načinu napovedi števila primitivov. Z modifikacijo najboljše metode smo dosegli dobro kvaliteto abstrakcije. Nato smo opravili klasifikacijo morfologije na podlagi razdalje med vektorji parametrov abstrakcij. Klasifikacija ni bila zadovoljiva. Tudi na razsevnem diagramu, ki smo ga pridobili z vložitvijo razdalj, je bilo razvidno, da razdalje slabo ločujejo mitohondrije z različno morfologijo. Po močnejših metodah strojnega učenja pa nismo mogli poseči zaradi pomanjkanja mitohondrijev z označeno morfologijo.

Language:Slovenian
Keywords:celični predelki, mitohondriji, volumetrični podatki, abstrakcija oblik, konvolucijske nevronske mreže
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144826 This link opens in a new window
COBISS.SI-ID:148016643 This link opens in a new window
Publication date in RUL:15.03.2023
Views:839
Downloads:98
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep learning for shape abstraction of cellular compartments
Abstract:
Cell compartments can vary in morphology. Mitochondria within eukaryotic cells, the focus of this thesis, can be branched or touch each other. Our objective is the classification of mitochondrial morphology. Since it is difficult to obtain a representation of the raw shape that would describe its morphology well, we turned to shape abstraction. Abstraction describes a shape with a small set of geometric primitives. We evaluated three shape abstraction methods that utilize deep learning. These differ in the type of input, the method of evaluating abstraction quality and in how the number of primitives is predicted. By modifying the best performing method, we achieved good abstraction quality. We then performed morphology classification based on the distance between vectors of abstraction parameters. The classification was not satisfactory. We also showed that these distances poorly separate mitochondria with different morphologies by embedding the distances and plotting the embeddings on a scatter plot. We were unable to perform classification with more powerful machine learning methods due to a lack of mitochondria with labelled morphology.

Keywords:cell compartments, mitochondria, volumetric data, shape abstraction, convolutional neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back