izpis_h1_title_alt

Globoko učenje in vmesniki možgani-računalnik
ID CASERMAN, ROK (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,54 MB)
MD5: 48704C7B8EF6D4F0C559583421AA79B7

Abstract
Vmesniki možgani-računalnik omogočajo človeku nadzor nad napravo s pomočjo merjenja šibke možganske električne aktivnosti. S tehniko, imenovano elektroencefalografija, je mogoče vzpostaviti komunikacijski kanal, preko katerega se lahko uporabnik sporazumeva z napravo. Prva večja omejitev vmesnikov, ki delujejo s pomočjo elektroencefalografije, je cena uporabljene opreme, ki velikokrat presega denarne zmožnosti posameznikov. Poleg tega pa izbor značilk možganskih signalov, ki se uporabljajo v fazi klasifikacije, zahteva obsežno domensko znanje. V okviru diplomskega dela je bil razvit vmesnik možgani-računalnik zgolj z uporabo prostodostopnih oz. nizkocenovnih orodij. Hkrati pa smo za klasifikacijo signalov uporabili konvolucijsko nevronsko mrežo, za katero izbor značilk ni potreben. Implementirani vmesnik smo sistematično ovrednotili na dveh klasifikacijskih metodah in tako pokazali, da je globoko učenje v vmesnikih možgani-računalnik pod določenimi pogoji enako ali celo boljše kot obstoječe klasifikacijske tehnike. Rezultati pa so tudi pokazali nizko klasifikacijsko točnost konvolucijske nevronske mreže v primeru, ko so bili učni podatki zajeti z drugačno opremo, kot jo uporablja implementirani vmesnik, kar nakazuje na neprenosljivost uporabljenega modela med različnimi strojnimi opremami.

Language:Slovenian
Keywords:vmesniki možgani-računalnik, globoko učenje, elektroencefalografija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144766 This link opens in a new window
COBISS.SI-ID:147532803 This link opens in a new window
Publication date in RUL:10.03.2023
Views:1001
Downloads:221
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep learning and brain-computer interfaces
Abstract:
Brain-computer interfaces enable humans to control machines by measuring weak electrical activity produced by the brain. An user-machine communication channel used can be established through a technique called electroencephalography. The first bigger obstacle of such interfaces is the cost of equipment associated with them, which is in most cases out of individuals reach. Furthermore the feature selection requires a large amount of domain knowledge which can be a difficult process. In this paper we've developed a brain-computer interface using components which are either free to use or low cost. For feature selection process we've leveraged convolutional neural networks which don't require this step. The implemented interface was evaluated using two classification techniques with the result showing that under some circumstances deep learning is equivalent or better to existing classification methods. Results have also shown that using convolutional neural network, which was trained on a dataset captured with different equipment to which the implemented BCI was using, resulted in poor classification performance, which indicates non-transferability of used model between different hardware.

Keywords:brain-computer interface, deep learning, electroencephalography

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back