V diplomski nalogi obravnavamo uporabo metod strojnega učenja za uvrščanje bolnikov s Parkinsonovo boleznijo (PD) s ciljem izboljšanja točnosti glede na trenutno metodo. Cilj naloge je predstaviti posplošen algoritem za analizo napredovanja bolezni iz podatkov časovne vrste, ki ga je mogoče uporabiti za poljubne podatke tega formata. Pri analizi smo uporabljali klinične časovne vrste podatkov, ki temeljijo na vprašalnikih Parkinson's Progression Markers Initiative (PPMI). Po čiščenju in normalizaciji podatkov smo uporabili nenadzorovano gručenje za prepoznavanje podtipov bolezni bolnikov.
Po določitvi začetnega podtipa bolezni za prve obiske bolnikov pri zdravniku smo preizkusili in uporabili najboljši model nadzorovanega učenja za napoved stopnje bolezni preostalih obiskov. Za ta namen smo uporabili različne klasifikatorje: metodo podpornih vektorjev (SVM), večplastni perceptron (MLP) in naključne gozdove (RF). Metoda SVM se je izkazala kot najboljša za naš problem s točnostjo 95,06% na testnih podatkih.
Na koncu modeliramo in opazujemo spremembe podtipa bolnikove bolezni med njihovimi zaporednimi obiski z uporabo preskočnih nizov in markovskih verig.
Diplomsko delo podaja natančno analizo naprednih tehnik strojnega učenja na podatkih časovnih vrst.
|