izpis_h1_title_alt

Algebrska in grafična predstavitev polinoma : magistrsko delo
ID Onuk, Žan (Author), ID Horvat, Eva (Mentor) More about this mentor... This link opens in a new window, ID Mastnak, Adrijana (Comentor)

.pdfPDF - Presentation file, Download (1,57 MB)
MD5: 2BCFB474C6FAC733EB3FECA74BE032B0

Abstract
Z izrazom polinom se dijaki prvič srečajo v 3. letniku srednje šole, v resnici pa ta pojem gradijo že prej. V srednji strokovni šoli polinome obravnavamo kot realne funkcije in ob tem računamo njihove ničle, raziskujemo njihovo obnašanje v neskončnosti in rišemo njihove grafe. Pri obravnavi na fakulteti pa lahko polinome obravnavamo nekoliko širše in z nekoliko drugačnega zornega kota, saj si jih predstavljamo kot neskončna zaporedja elementov iz nekega kolobarja K. V teoretičnem delu magistrskega dela bomo spoznali pojem kolobarja in njegove osnovne lastnosti, kar bo osnova za vpeljavo pojma polinoma nad kolobarjem, saj se lastnosti kolobarja K prenesejo tudi na kolobar polinomov K[x]. V nadaljevanju bomo vpeljali pojem evaluacije polinoma v točki, na podlagi česar bomo definirali ničlo polinoma. Predstavili bomo tudi algoritem deljenja in nekaj njegovih posledic. Vmes bomo to abstraktno predstavljeno vsebino primerjali z obravnavo v srednjih šolah in gimnazijah, kjer so te vsebine predstavljene bolj poenostavljeno in se omejimo na polinome nad kolobarjem realnih števil. Osredotočili se bomo na povezavo med algebrsko in grafično predstavitvijo polinoma. Empirični del bo predstavljal praktično raziskavo, pri kateri bomo primerjali dva različna pristopa pri poučevanju teme graf polinoma. Pri prvem gre za klasično obravnavo te teme, pri drugem pa za samostojno odkrivanje s pomočjo programa Desmos.

Language:Slovenian
Keywords:kolobar polinomov, ničla polinoma, razcepnost polinoma, graf polinoma, učenje z odkrivanjem, Desmos
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:Ž. Onuk
Year:2023
Number of pages:145 str.
PID:20.500.12556/RUL-144610 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:144033283 This link opens in a new window
Publication date in RUL:03.03.2023
Views:713
Downloads:78
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algebraic and Graphical Representation of a Polynomial
Abstract:
Students first encounter the term polynomial in the third year of secondary school; however, they develop its concept at an earlier stage. In secondary technical school, we study polynomials as real functions, counting their zeros, exploring their behavior at infinity and drawing their graphs. At the university level, on the other hand, polynomials are considered from a slightly different perspective, by defining them as infinite sequences of elements of a ring K. In the theoretical part of the master's thesis, the definition and basic characteristics of rings are introduced. This lays the basis for introducing the ring of the polynomials with coefficients in a given ring, since some properties of the coefficient ring $K$ are transferred to the ring of polynomials K[x]. Later on, we introduce polynomial evaluation at a point, which will be used to define polynomial zeros. The division algorithm and some of its corollaries are recalled. Moreover, we compare this abstract content to its discussion and consideration in primary and secondary school, where these topics are presented in a simplified way and are restricted to polynomials with real coefficients. The focus of our observation is the connection between the algebraic and the graphical representation of polynomials. The empirical part is a practical investigation comparing two different approaches to teaching graphing polynomial functions. The first one is a classical treatment of the topic, while the second one is learning by independent discovery using the program Desmos.

Keywords:polynomial ring, polynomial zero, polynomial factorisation, graph of polynomial, learning by independent discovery, Desmos

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back