izpis_h1_title_alt

O nelinearnih enačbah : magistrsko delo
ID Muha, Domen (Author), ID Saksida, Pavle (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (832,98 KB)
MD5: 18F8C99CA676A36A402A509C100CE148

Abstract
Magistrsko delo začnemo s kratkim pregledom nekaterih znanih enačb matematične fizike. Obenem ponovimo tudi nekaj osnovnih pristopov k reševanju parcialnih diferencialnih enačb in izračunamo posamezne rešitve v obliki potujočega vala. V nadaljevanju se posvetimo obravnavi Korteweg-deVriesove enačbe. Predstavimo pripadajoči Laxov par in z njegovo pomočjo prikažemo izpeljavo splošnejše N-solitonske rešitve te enačbe. Reševanje enačb s pomočjo Laxovega para si ogledamo tudi na primeru Todove mreže, kjer z inverzno sipalno transformacijo poiščemo rešitev sistema navadnih diferencialnih enačb. Delo zaključimo s podrobno obravnavo nelinearne Schrödingerjeve enačbe oziroma njene prevedbe na matrični Riemann-Hilbertov problem.

Language:Slovenian
Keywords:Laxov par, Korteweg-deVriesova enačba, Todova mreža, nelinearna Schrödingerjeva enačba, Riemann-Hilbertov problem
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-144608 This link opens in a new window
UDC:517.9
COBISS.SI-ID:145713155 This link opens in a new window
Publication date in RUL:03.03.2023
Views:1582
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:On nonlinear equations
Abstract:
We begin the master thesis with a short overview of some famous equations of mathematical physics. We recall some of the basic methods for solving partial differential equations and present their traveling wave solutions. We continue by focusing on the Korteweg-deVries equation and the corresponding Lax pair. Using this important mathematical tool we derive the N-soliton solution of the Korteweg-deVries equation. We also present the Toda lattice, a system of ordinary differential equations, which we solve with the help of a Lax pair and a method, called the inverse scattering transform. The thesis is concluded by the detailed presentation of nonlinear Schrödinger equation and corresponding matrix Riemann-Hilbert problem.

Keywords:Lax pair, Korteweg-deVries equation, Toda lattice, nonlinear Schrödinger equation, Riemann-Hilbert problem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back