izpis_h1_title_alt

Inkrementalna rekonstrukcija slike iz razpršenih podatkov
ID ERZAR, BLAŽ (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window, ID Lesar, Žiga (Comentor)

.pdfPDF - Presentation file, Download (4,54 MB)
MD5: 7DBE01A71B0AB32BB7305B8FBA6E1516

Abstract
Za pohitritev metod računalniške grafike pogosto zmanjšamo količino podatkov. Pri metanju žarkov lahko to na primer dosežemo s pošiljanjem manj žarkov v nekatere dele slike. S tem dobimo razpršene podatke, iz katerih želimo rekonstruirati končno sliko. Tega se lotimo z reševanjem parcialne diferencialne enačbe, za kar uporabimo iterativne metode, ki rešujejo sistem linearnih enačb. Osnovne iterativne metode konvergirajo počasi, zato predstavimo večmrežno metodo, ki deluje na mrežah različnih ločljivosti, s čimer doseže boljšo konvergenco. Ker je pri rekonstrukciji lahko na voljo zelo malo podatkov, na primer 5%, končna slika ne vsebuje podrobnosti prvotne. Zato razvijemo še konvolucijsko nevronsko mrežo z arhitekturo samokodirnika, ki nam omogoči delno povrnitev podrobnosti prvotne slike.

Language:Slovenian
Keywords:rekonstrukcija, razpršeni podatki, večmrežna metoda, nevronska mreža, samokodirnik
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144588 This link opens in a new window
COBISS.SI-ID:144135939 This link opens in a new window
Publication date in RUL:02.03.2023
Views:916
Downloads:218
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Incremental image reconstruction from scattered data
Abstract:
To speed up computer graphics methods, we often reduce the amount of data. At ray casting, for example, this can be achieved by sending fewer rays to certain parts of the image. This results in scattered data from which we want to reconstruct the final image. This is done by solving a partial differential equation using iterative methods that solve a system of linear equations. The basic iterative methods have slow convergence, so we present a multigrid method that works on grids of different resolutions and thus achieving better convergence. Since very little data may be available at reconstruction, for example 5%, the final image does not contain the details of the original one. Therefore we develop a convolutional neural network with an autoencoder architecture, which allows us to partially recover the details of the original image.

Keywords:reconstruction, scattered data, multigrid method, neural network, autoencoder

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back