izpis_h1_title_alt

Modeliranje porazdelitev škodnih rezervacij pri premoženjskih zavarovanjih : magistrsko delo
ID Šraj, Eva (Author), ID Perman, Mihael (Mentor) More about this mentor... This link opens in a new window, ID Lipovec, Rudi (Comentor)

.pdfPDF - Presentation file, Download (978,44 KB)
MD5: F4DAB144D053D9382041205893245CE8

Abstract
Naloga aktuarjev v zavarovalnici je čim natančneje oceniti višino škodnih rezervacij. Znane kumulativne zneske škod $C_{i,j}$ za $i+j \le I$ preučujemo v razvojnem trikotniku škod, s katerim napovemo prihodnje kumulativne zneske škod $\widehat{C_{i,j}}$ za $i+j > I$, kjer $i \in \{0, \ldots, I \}$ označuje leta nastanka škode in $j \in \{ 0, \ldots, J \}$ razvojna leta. Za napovedovanje zneskov škod aktuarji uporabljajo deterministične in stohastične metode. Deterministične metode podajo le točkovno oceno škodne rezervacije, medtem ko stohastične metode preko srednje kvadratične napake napovedi opišejo tudi oceno negotovosti škodne rezervacije. Ker je analitičen izračun srednje kvadratične napake napovedi včasih zahteven, aktuarji uporabljajo simulacijsko metodo vzorčenja. Med determinističnimi metodami bomo obravnavali metodo veriženja, Bornhuetter-Fergusonovo metodo in Poissonov model, pri stohastičnih pa Mackov model, Prerazpršen Poissonov model in vzorčenje v Prerazpršenem Poissonovem modelu ter Eksakten Bayesov model. Na porazdelitvi skupne škodne rezervacije lahko preko tvegane vrednosti določimo prilagoditev za tveganje, ki je pomembna v kontekstu Mednarodnega standarda računovodskega poročanja 17 - Zavarovalne pogodbe.

Language:Slovenian
Keywords:škodna rezervacija, stohastični modeli rezervacij, MSRP 17, prilagoditev za tveganje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-144572 This link opens in a new window
UDC:519.22
COBISS.SI-ID:143255043 This link opens in a new window
Publication date in RUL:02.03.2023
Views:1972
Downloads:488
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modelling the distribution of claim reserves in non-life insurance
Abstract:
The role of actuaries in insurance companies is to estimate the claim reserves as accurately as possible. Known cumulative claims $C_{i,j}$ for $i+j \le I$ are reported in the development triangle, which is used to estimate future cumulative claims $\widehat{C_{i,j}}$ for $i+j >I$, where $i \in \{0, \ldots, I \}$ indicates accident years and $j \in \{ 0, \ldots, J \}$ development years. Actuaries use deterministic and stochastic methods to predict claim amounts. In deterministic methods only a single-point estimate of claim is calculated, while stochastic methods also provide an estimate of the uncertainty of claim reserve by the mean square error of prediction. As the analytical calculation of the mean squared error of prediction is sometimes demanding, actuaries use the bootstrap method. Among the deterministic methods we will consider the Chain-Ladder method, the Bornhuetter-Ferguson method and the Poisson model, and among the stochastic ones, the Mack model, the Overdispersed Poisson model and the bootstrap in Overdispersed Poisson model, and the Exact Bayes model. From the distribution of the total claim reserve we can determine the risk adjustment by the value-at-risk, which is important in the context of the International Financial Reporting Standard 17 - Insurance Contracts.

Keywords:claim reserve, stochastic reserving models, IFRS 17, risk adjustment

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back