izpis_h1_title_alt

Orodja za pretvorbo govora v besedilo in prevajanje v tuje jezike pri pedagoškem procesu
ID CAMAJ, SANDRA (Author), ID Humar, Iztok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,76 MB)
MD5: 082B9A473076830C62FE6B1750AEF929

Abstract
Namen diplomskega dela je raziskava in primerjava orodij za pretvorbo govora v besedilo in prevod v tuje jezike, s ciljem uporabe pri pedagoškem procesu. Orodje, ki bi to funkcijo zadovoljivo opravljalo, bi se lahko uporabljalo za študente na mednarodnih izmenjavah, ki še ne zmorejo slediti predavanjem v jeziku gostiteljske države. V prvem delu diplomskega dela je opisan razvoj orodij za razpoznavo in pretvorbo govora od najstarejših sistemov do najnovejših tehnologij, kot sta Alexa in Siri. Predstavljen je tudi razvoj orodij za strojni prevod v tuje jezike – od začetnih prevodov s pomočjo slovarjev do najbolj sodobnega načina prevoda, ki deluje s pomočjo nevronskega omrežja. V nadaljevanju je razloženo delovanje orodij za pretvorbo govora in prevod. Poglobimo se v tri orodja, tj. orodje Google Dokumenti s funkcijo glasovnega tipkanja, orodje Google Prevajalnik s funkcijo pogovornega načina in tolmač Online Notes. Zadnjega je razvila skupina raziskovalcev pod vodstvom Fakultete za računalništvo in informatiko v sodelovanju s Centrom za jezikovne vire in tehnologije Univerze v Ljubljani. Po predstavitvi vseh treh orodij je prikazana uspešnost njihovega delovanja. Navedene so specifikacije ocenjenih posnetkov in končni rezultati meritev. V analitičnem delu so prikazana opažanja pri izvajanju testov in praktični primeri napak razpoznave govora in prevoda. Iz rezultatov je razvidno, da se orodja pri prevodu tehniških in naravoslovnih predavanj izkažejo veliko slabše kot pri prevodu družboslovnih predavanj. Za konec je narejena primerjava uporabnosti vseh treh orodij. Ugotovimo, da sta najbolj komercialni orodji še najmanj primerni za uporabo v pedagoškem procesu.

Language:Slovenian
Keywords:prevod, strojni prevod, prevajalnik, razpoznava govora, pretvorba govora
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-144553 This link opens in a new window
COBISS.SI-ID:143656451 This link opens in a new window
Publication date in RUL:01.03.2023
Views:681
Downloads:87
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Speech-to-text and foreign language translation tools for pedagogical process
Abstract:
The aim of this thesis is to investigate and compare tools for speech-to-text conversion and foreign language translation in the teaching process. A tool that performs this function correctly enough could be used for people studying abroad, who have not yet fully mastered the language of the lecturers. The first part of the thesis describes the development of speech recognition and conversion tools from the oldest systems to the latest technologies, such as Alexa and Siri. This is followed by a presentation of the development of tools for machine translation into foreign languages – from the initial translations using dictionaries to the most modern translation method using a neural network. The following section explains how speech-to-text conversion and translation tools work. We look at all three tools discussed in the thesis, i.e., Google Docs with voice typing, Google Translate with conversation mode and Online Notes. The latter was developed by a team of researchers led by the Faculty of Computer and Information Science in collaboration with the Centre for Language Resources and Technologies of the University of Ljubljana. After the presentation of the three tools, we see the success of their performance. We are given the specifications of the evaluated recordings followed by the results of the usage tests. In the analytical part, observations from the tests and practical examples of speech recognition and translation errors are presented. It is evident that the tools perform much worse in the translation of science-based than social-based lectures. Finally, a comparison of the usability of the three tools is made. We find that the two most commercial tools are the least suitable for pedagogical use.

Keywords:translation, machine translation, translator, speech recognition, speech-to-text conversion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back