izpis_h1_title_alt

Analiza stabilnosti nehidrostatičnega modela za napovedovanje vremena : magistrsko delo
ID Kastelec, Nika (Author), ID Žagar, Emil (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,01 MB)
MD5: 8CE57F06629884F356D751B8D03C2697

Abstract
V delu predstavimo semi-implicitno metodo za reševanje numeričnega modela za napovedovanje vremena. Predstavimo von Neumannovo metodo za analizo stabilnosti, ki jo nato uporabimo za preučevanje stabilnosti semi-implicitnih časovno dvostopenjskih shem za reševanje sistema parcialnih diferencialnih enačb. Na ta način testiramo nehidrostatični model za napovedovanje vremena, formuliran z novima spremenljivkama, ki opisujeta psevdovertikalno divergenco $\mathbb{D}$ in realni zračni tlak $\hat{q}$. Rezultate najprej prikažemo na teoretični način, kjer nas predvsem zanima, kako vpliva orografija površja, nad katerim napovedujemo vreme, nato pa jih prikažemo še na podlagi dvodimenzionalnih realnih eksperimentov, ki jih naredimo s pomočjo modela Aladin.

Language:Slovenian
Keywords:semi-implicitna metoda, analiza stabilnosti, parcialne diferencialne enačbe, numerični model, napovedovanje vremena
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144434 This link opens in a new window
UDC:519.6
COBISS.SI-ID:141907971 This link opens in a new window
Publication date in RUL:22.02.2023
Views:647
Downloads:84
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stability analysis of a non-hydrostatic model for weather prediction
Abstract:
The master thesis proposes a semi-implicit method for the discretization of the numerical weather prediction model. We present von Neumann's method for stability analysis, which is then used for stability analysis of two-time-level semi-implicit schemes for numerical solving a system of partial differential equations. In this way, we test a non-hydrostatic weather prediction model formulated with new variables describing pseudovertical divergence $\mathbb{D}$ and real pressure $\hat{q}$. We first show the results in a theoretical way, where we are mainly interested in how the orography of the surface over which we forecast the weather affects it, and then we show them for two-dimensional real case experiments, which we do with the model Aladin.

Keywords:semi-implicit method, stability analysis, partial differential equations, numerical model, weather prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back