izpis_h1_title_alt

Deep learning in neuroimaging data analysis : applications, challenges, and solutions
ID Avberšek, Lev Kiar (Avtor), ID Repovš, Grega (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,23 MB)
MD5: 7377683E9859881CDD8A84EB6CD6625D
URLURL - Izvorni URL, za dostop obiščite https://www.frontiersin.org/articles/10.3389/fnimg.2022.981642/full Povezava se odpre v novem oknu

Izvleček
Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent linearity of neural processes. Here, we discuss a group of machine learning methods, called deep learning, which have drawn much attention in and outside the field of neuroscience in recent years and hold the potential to surpass the mentioned limitations. Firstly, we describe and explain the essential concepts in deep learning: the structure and the computational operations that allow deep models to learn. After that, we move to the most common applications of deep learning in neuroimaging data analysis: prediction of outcome, interpretation of internal representations, generation of synthetic data and segmentation. In the next section we present issues that deep learning poses, which concerns multidimensionality and multimodality of data, overfitting and computational cost, and propose possible solutions. Lastly, we discuss the current reach of DL usage in all the common applications in neuroimaging data analysis, where we consider the promise of multimodality, capability of processing raw data, and advanced visualization strategies. We identify research gaps, such as focusing on a limited number of criterion variables and the lack of a well-defined strategy for choosing architecture and hyperparameters. Furthermore, we talk about the possibility of conducting research with constructs that have been ignored so far or/and moving toward frameworks, such as RDoC, the potential of transfer learning and generation of synthetic data.

Jezik:Angleški jezik
Ključne besede:artificial intelligence, machine learning, deep learning, neuroimaging, neuroscience, data analysis, computational models, cognitive processes, learning, neural networks
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FF - Filozofska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:26.10.2022
Leto izida:2022
Št. strani:23 str.
PID:20.500.12556/RUL-144306 Povezava se odpre v novem oknu
UDK:159.91:159.955
ISSN pri članku:2813-1193
DOI:10.3389/fnimg.2022.981642 Povezava se odpre v novem oknu
COBISS.SI-ID:132600323 Povezava se odpre v novem oknu
Datum objave v RUL:13.02.2023
Število ogledov:573
Število prenosov:76
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Frontiers in neuroimaging
Skrajšan naslov:Front. neuroimaging
Založnik:Frontiers Media SA
ISSN:2813-1193
COBISS.SI-ID:105382915 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:slikanje možganov, kognitivni procesi, učenje, strojno učenje, nevroznanost, računsko modeliranje, umetna inteligenca, nevronske mreže

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P3-0338
Naslov:Fiziološki mehanizmi nevroloških motenj in bolezni

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J3-9264
Naslov:Razstavljanje kognicije: Mehanizmi in reprezentacije delovnega spomina

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj