In this thesis we have used the YOLO deep learning algorithm for detection of four key objects (mammilla, the top of breast, the bottom of breast, pectoral muscle) on the mammogram images. To train the models, we have used a database of 308 mammogram images, owned by the Faculty of Health Sciences, University of Ljubljana. The mammogram images in the CC and MLO projections were randomly distributed in a training, validation and test data set. We have labelled the images with an image annotation tool CVAT. We have then performed training and evaluation of models with the YOLOv3 and YOLOv5 algorithms on different size images. All models were pretrained on a MS COCO database. Finally, we compared the models according to their performance. Model YOLOv5, which was trained on CC images, achieved a 88,2 % mAP, 91,8 % precision and 87,5 % recall on the test set. Model YOLOv5, which was trained on MLO images, achieved 99,5 % mAP, 99,3 % precision and 94,4 % recall on the test set.
|