izpis_h1_title_alt

Uporaba algoritma globokega učenja YOLO za detekcijo objektov na mamografskih slikah
ID BIZILJ, EVA (Author), ID Brodnik, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Žibert, Janez (Comentor)

.pdfPDF - Presentation file, Download (8,72 MB)
MD5: 87A6B6EEFEBBBC43336A013EECA4C72C

Abstract
V diplomski nalogi smo uporabili algoritem globokega učenja YOLO za detekcijo štirih ključnih objektov (mamile, vrha dojke, dna dojke in prsne mišice) na mamografskih slikah. Za učenje modelov smo uporabili podatkovno zbirko 308 mamografskih slik, ki je v lasti Zdravstvene fakultete, Univerze v Ljubljani. Mamografske slike, ki so narejene v projekcijah CC in MLO smo naključno razdelili v učno (~ 70 % slik), validacijsko (~ 15 % slik) in testno množico (~ 15 % slik). Slike smo označili z orodjem za označevanje slik CVAT. Nato smo na različnih velikostih slik izvedli učenje in vrednotenje modelov z algoritmom YOLOv3 in YOLOv5. Vsi modeli so bili prednaučeni na podatkovni zbirki slik MS COCO. Dobljene modele smo med seboj primerjali po uspešnosti detekcije objektov z uporabo srednje povprečne natančnosti (mAP), natančnosti in priklica. Z algoritmom YOLOv5 smo dobili najboljša modela. Model YOLOv5 je na CC slikah dosegel 88,2 % mAP, 91,8 % natančnost in 87,5 % priklic na testni množici, model YOLOv5 na MLO slikah pa 99,5 % mAP, 99,3 % natančnost in 94,4 % priklic na testni množici.

Language:Slovenian
Keywords:globoko učenje, detekcija objektov, mamografija, konvolucijska nevronska mreža, algoritem YOLO
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-144200 This link opens in a new window
COBISS.SI-ID:142963971 This link opens in a new window
Publication date in RUL:03.02.2023
Views:1021
Downloads:232
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
In this thesis we have used the YOLO deep learning algorithm for detection of four key objects (mammilla, the top of breast, the bottom of breast, pectoral muscle) on the mammogram images. To train the models, we have used a database of 308 mammogram images, owned by the Faculty of Health Sciences, University of Ljubljana. The mammogram images in the CC and MLO projections were randomly distributed in a training, validation and test data set. We have labelled the images with an image annotation tool CVAT. We have then performed training and evaluation of models with the YOLOv3 and YOLOv5 algorithms on different size images. All models were pretrained on a MS COCO database. Finally, we compared the models according to their performance. Model YOLOv5, which was trained on CC images, achieved a 88,2 % mAP, 91,8 % precision and 87,5 % recall on the test set. Model YOLOv5, which was trained on MLO images, achieved 99,5 % mAP, 99,3 % precision and 94,4 % recall on the test set.

Keywords:deep learning, object detection, mammography, convolutional neural network, algorithm YOLO

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back