izpis_h1_title_alt

Physical, rheological and mechanical properties of alkali activated hydrogels based on nanofibrillated cellulose
ID Žepič Bogataj, Vesna (Author), ID Oven, Primož (Author), ID Čop, Matjaž (Author), ID Vek, Viljem (Author), ID Janković, Biljana (Author), ID Poljanšek, Ida (Author)

.pdfPDF - Presentation file, Download (2,30 MB)
MD5: B7D45C8198E30A88662E420E5B36AD95
URLURL - Source URL, Visit https://www.tandfonline.com/doi/full/10.1080/15440478.2022.2123879 This link opens in a new window

Abstract
Hydrogels are classified as a three-dimensional network system, capable of retaining large amounts of water while preserving their shape and dimensional stability. Due to their natural origin and biocompatibility with human tissue, cellulose nanofibrils are often considered to be promising candidates for bioactive hydrogels preparation. For such applications, their responsiveness under different types of mechanical load, including multiple cyclic compressions, is of crucial importance. In the present study, cellulose nanofibril-based hydrogels were initiated though a simple alkali neutralization treatment. Structural, rheological and compressive features were investigated as a function of elevated NaOH concentration and physical gelling conditions. It was found that a sufficiently concentrated alkaline solution allows the formation of mechanically robust cellulose nanofibril hydrogels, which can be dried to the state of ultralight material, aerogel, of low density (0.057 g cm$^{−3}$), superior porosity (96.2%), super water absorbant capacity (1200%), and exceptional shear and compressive load resilience with elasticity modulus of 9.3 kPa. These outstanding characteristics can be predominantly attributed to the polymorphic conversion of cellulose I to cellulose II, which results from the mercerization of cellulose nanofibrils and creates a stable and firm hydrogels texture.

Language:English
Keywords:nanofibrillated cellulose, hydrogel, mercerization, water absorption, compression, shear properties
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:BF - Biotechnical Faculty
FFA - Faculty of Pharmacy
Publication status:Published
Publication version:Version of Record
Year:2022
Number of pages:Str. 16040-16052
Numbering:Vol. 19, no. 17
PID:20.500.12556/RUL-143951 This link opens in a new window
UDC:630*8
ISSN on article:1544-046X
DOI:10.1080/15440478.2022.2123879 This link opens in a new window
COBISS.SI-ID:122854147 This link opens in a new window
Note:
KLJUČNE BESEDE: absorpcija vode, kompresija, mercerizacija, strižne lastnosti, hidrogel, nanofibrilirana celuloza
Publication date in RUL:23.01.2023
Views:870
Downloads:76
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of natural fibers
Publisher:Taylor & Francis
ISSN:1544-046X
COBISS.SI-ID:521905689 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Chinese
Abstract:
水凝胶被分类为三维网络系统, 能够保留大量水, 同时保持其形状和尺寸稳 定性. 由于其天然来源和与人体组织的生物相容性, 纤维素纳米纤维通常被 认为是生物活性水凝胶制备的有前景的候选材料. 对于此类应用, 它们在不 同类型的机械载荷(包括多次循环压缩)下的响应性至关重要. 在本研究中, 通过简单的碱中和处理引发纤维素纳米纤维基水凝胶. 研究了作为提高 NaOH浓度和物理胶凝条件的函数的结构、流变和压缩特性. 发现充分浓缩 的碱性溶液允许形成机械坚固的纤维素纳米纤维水凝胶, 其可干燥至超轻 材料、低密度(0.057 gcm) 气凝胶的状态−3) 具有优异的孔隙率(96.2%)、 超强吸水能力(1200%)以及优异的剪切和压缩载荷弹性, 弹性模量为9.3 kPa. 这些突出的特征主要归因于纤维素I向纤维素II的多晶型转化, 这是纤 维素纳米纤维丝光化的结果, 并产生稳定和牢固的水凝胶纹理.

Keywords:纳米原纤化纤维素, 丝光 化, 水凝胶, 吸水率, 压缩, 剪切特性

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P4-0015
Name:Les in lignocelulozni kompoziti

Funder:ARRS - Slovenian Research Agency
Project number:L4-2623
Name:Pridobivanje ekstraktov grč in skorje z visoko vsebnostjo polifenolov iz manj izkoriščene biomase bele jelke

Funder:ARRS - Slovenian Research Agency
Project number:J2-1723
Name:Katalitska pretvorba lignina v bioosnovane polimerne gradnike z uporabo CO2 (CaLiBration)

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back