izpis_h1_title_alt

Predstavitev polinomskih krivulj in ploskev s principom razcveta : magistrsko delo
ID Šteblaj, Matija (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,31 MB)
MD5: FBA86245B372D4422A0E2C5F5DDB0B5F

Abstract
V delu predstavimo princip razcveta: za vsako polinomsko preslikavo F stopnje n med afinimi prostori obstaja simetrična, multiafina preslikava f v n spremenljivkah, ki se na diagonali ujema s prvotno preslikavo. Preslikavi f rečemo (multiafin) razcvet preslikave F. Z njo lahko vsako polinomsko krivuljo oz. ploskev predstavimo kot Bezierjevo krivuljo oz. trikotno Bezierjevo krpo. Pri tem so kontrolne točke krivulje oz. krpe določene z vrednostmi razcveta na izbranem afinem ogrodju prostora. S pomočjo razcveta obravnavamo tudi zlepke Bezierjevih krivulj oz. krp in njihovo gladkost. Pokažemo, da se pogoji za posamezen red gladkosti lahko izrazijo kot enakosti med razcveti obeh krivulj oz. krp pri ustreznih argumentih.

Language:Slovenian
Keywords:afin prostor, polinom, razcvet, Bernsteinovi bazni polinomi, Bezierjeve krivulje, trikotne Bezierjeve krpe, ploskev, de Casteljaujev algoritem, zlepki
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-143949 This link opens in a new window
UDC:519.6
COBISS.SI-ID:138055171 This link opens in a new window
Publication date in RUL:22.01.2023
Views:1336
Downloads:152
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Representation of polynomial curves and surfaces with the blossoming principle
Abstract:
In this work we present the blossoming principle: for every polynomial map F of degree n between affine spaces there exists a symmetric, multiaffine map f in n variables, which agrees with F on the diagonal. We call f the (multiaffine) blossom of F. With it we can represent each polynomial curve or surface as a Bezier curve or triangular Bezier patch. The control points of said curve or patch are determined by the values of the blossom f on a chosen affine frame. Utilising the blossoming principle, we also describe splines of Bezier curves and splines of triangular Bezier patches and their smoothness. We show that the conditions for a spline to satisfy a particular order of continuity can be expressed as equalities between the blossoms of both curves or surfaces on a specific collection of arguments.

Keywords:affine space, polynomial, blossom, Bernstein basis polynomials, Bezier curve, triangular Bezier patch, surface, de Casteljau algorithm, spline

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back