izpis_h1_title_alt

Model električnega pogona za analizo akustičnega hrupa
ID BIRSA, ANEJ (Author), ID Drobnič, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,64 MB)
MD5: 4433A374DC55E08E542E6DC2A448FA43

Abstract
V avtomobilski industriji se dandanes precej pozornosti namenja tako analizi izvora kot tudi obvladovanju akustičnega hrupa. V uvodnem delu se osredotočim na ozadje te tematike in predstavim, kako je prišlo do zahtev po dodatnem razumevanju vpliva močnostnega pretvornika na akustični hrup motorja. Sledi opis modeliranja električnega pogonskega sistema (EPS) in posameznih podsistemov, kjer podrobneje opišem tokovno regulacijo v rotorskem koordinatnem sistemu, modulacijski postopek, močnostni pretvornik in modela električnega motorja. Modela motorja, tako linearni (LMEM) kot nelinearni (NMEM), modeliram v koordinatnem sistemu rotorskega polja, za kar je nujno razumevanje transformacij med sistemi. Ko je v EPS uporabljen LMEM, največ poudarka namenim harmonski analizi statorskih tokov in navora ter dodatno opišem delovanje EPS. V nadaljevanju se osredotočim na modeliranje nelinearnega modela EPS (NMEPS) z metodo končnih elementov, kjer NMEM parametriziram s tokovno odvisnostjo magnetnega sklepa. Rezultat dinamične simulacije NMEPS v okolju Simulink so statorski tokovi, ki vsebujejo tako časovne kot prostorske harmonike. Omenjeni tokovi magnetijo zračno režo, kar ima neposreden vpliv na statorske radialne sile. S predstavljenim postopkom nato uvozim tokove s harmonsko vsebino iz NMEPS v okolju Simscape Electrical kot vzbujanje pri magnetostatični analizi v programskem okolju Motor-CAD. Za referenco kot vzbujanje uporabim še idealni nastavljivi napetostni vir, nato pa analiziram vpliv višjeharmonskih komponent statorskih tokov na izhodne veličine analize. V zaključku magistrske naloge primerjam simulirane radialne sile pri obeh magnetostatičnih analizah. Dodatno z analizo merjenih vibracij na ohišju električnega motorja ocenim, da zgolj ta nivo modeliranja ni dovolj za predvidevanje vibracij. Zato z blokovnim diagramom predlagam sosledje simulacij za nadgradnjo naloge v prihodnje.

Language:Slovenian
Keywords:električni pogonski sistem, nelinearni model električnega motorja, višjeharmonske komponente, metoda končnih elementov, radialne sile, magnetostatična analiza, hrup, vibracije
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-143794 This link opens in a new window
COBISS.SI-ID:137633795 This link opens in a new window
Publication date in RUL:12.01.2023
Views:1046
Downloads:73
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Model of electric drive for acoustic noise analysis
Abstract:
Nowadays, the automotive industry lays great emphasis on the origin of acoustic noise and its attenuation. The introductory section focuses on how the inverter affects the acoustic noise of the electric motor. This is followed by a description of the modelling of the Electric Drive System (EPS) and the individual subsystems, where the further focus is placed on the definition of the current control in the rotor coordinate system, the modulation process, the inverter, and the Electric Motor models. The motor models, both linear (LMEM) and nonlinear (NMEM), are modelled in the rotor field coordinate system, which requires application of coordinate transformation between stationary and rotary systems. When LMEM is used in the EPS, most attention is paid to the harmonic analysis of the stator phase currents and of the torque, which is succeeded by a description of the EPS. The thesis then examines the modelling of a nonlinear model of the EPS (NMEPS) using the finite element method, where the NMEM is parameterised using non-linear current-flux relationship. The dynamic simulation of the NMEPS in the Simulink environment results in stator phase currents, that comprise both time and space harmonics. These currents excite magnetisation in the air gap, which directly impacts the stator radial forces. Using the presented procedure, the harmonic-content currents from the NMEPS are imported in the Simscape Electrical environment for excitation in the magnetostatic analysis in the Motor-CAD software environment. The ideal adjustable voltage source is also applied for the excitation, which is followed by the examination of the influence of the higher harmonic components on the output quantities of the analysis. In the conclusion, a comparison between the simulated radial forces in the two magnetostatic simulations is drawn. By analysing the measured vibrations on the electric motor housing, an additional deduction is made that suggests that this level of modelling alone is not sufficient to predict the vibrations. Therefore, further enhancement steps are suggested.

Keywords:electric drive system, nonlinear model of the electric motor, higher harmonic components, finite element method, radial forces, magnetostatic analysis, noise, vibration

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back