izpis_h1_title_alt

Strukturno podprto načrtovanje novih zaviralcev človeške DNA topoizomeraze II[alfa] : doktorska disertacija
ID Pogorelčnik, Barbara (Author), ID Šolmajer, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Perdih, Andrej (Comentor)

.pdfPDF - Presentation file, Download (13,71 MB)
MD5: 2CAF8F688CF999486B9362246599CC2C

Abstract
DNA topoizomeraze II spadajo v družino encimov, ki katalizirajo topološke spremembe v molekuli DNA. Človeška DNA topoizomeraza II sprošča dodatno zvito molekulo DNA, poleg tega je zmožna še razvozlanja (unknotting) in razpletanja (decatenation), kar je nujno pri procesih podvajanja in prepisovanja ter rekombinaciji. Prehod med različnimi topološkimi stanji je možen le s cepitvijo ene ali obeh verig dvovijačne molekule DNA, kar omogoči prehod druge molekule DNA skozi pretrgano molekulo DNA. Človeška DNA topoizomeraza IIα je dobro znana in validirana tarča, ki se uporablja za razvoj različnih protirakavih učinkovin. Učinkovine, ki zavirajo aktivnost topoizomeraze IIα, so glede na mehanizem delovanja razdeljene v dve glavni skupini: topoizomerazni strupi (poisons) in katalitični zaviralci (catalytic inhbitors). Topoizomerazni strupi stabilizirajo kovalentni kompleks topoizomeraza II-DNA (cleavable complex) in spremenijo nastali kompleks v močan celični toksin, ki onemogoča nadaljnjo normalno delitev celic. Kar nekaj učinkovin iz te skupine se že uporablja v klinični praksi. V drugo, novejšo skupino, spadajo zaviralci posameznih korakov katalitičnega cikla DNA topoizomeraze IIα. Zaradi stranskih učinkov, predvsem kardiotoksičnosti teh zdravil (topoizomeraznih strupov), je prišlo do potrebe po nadaljnjem razvoju novih in optimizaciji že znanih zaviralcev tega encima predvsem iz nove skupine katalitičnih zaviralcev. V doktorski disertaciji smo se ukvarjali z načrtovanjem in začetno eksperimentalno karakterizacijo več različnih kemijskih razredov novih katalitičnih zaviralcev človeške DNA topoizomeraze IIα, ki se vežejo v vezavno mesto za ATP. Uporabili smo dostopne strukturne podatke o vezavnem mestu za ATP in podatke o obstoječih ligandih, ki so nam služili kot robni pogoji pri iskanju novih spojin s pomočjo različnih metod računsko podprtega načrtovanja učinkovin. Spojine smo okarakterizirali tako na nivoju encimske aktivnosti, kot tudi njihovo sposobnost, da zavrejo rast rakavih celic. V prvi raziskavi smo na podlagi podatkov o vezavi že znanih zaviralcev (spojin, ki imajo v svoji strukturi purinski bicikel) na ATPazno domeno človeške topoizomeraze IIα pripravili farmakoforne modele na osnovi strukture encima in strukture ligandov, ki smo jih uporabili za virtualno rešetanje komercialno dostopnih spojin. Pri rešetanju smo poskušali identificirati nove monociklične spojine kot zamenjave za izhodni purinski bicikel. Odkrili smo serijo 1,3,5-triazinov, novih monocikličnih topoizomeraznih IIα zaviralcev v mikromolarnem v območju. Stabilnost interakcijskega vzorca sidrane poze aktivnega zaviralca smo študirali z molekulsko dinamiko (MD). 1,3,5-triazine, ki so izkazovali zaviralno aktivnost na človeški topoizomerazi IIα, smo ovrednotili še z in vitro MTT testom, s katerim smo pokazali selektivno citotoksičnost spojine na celični kulturi HepG2. V drugi raziskavi smo na osnovi eksperimentalno določene vezave molekule AMP-PNP v vezavnem mestu za ATP postavili farmakoforni model na osnovi strukture, ki smo ga uporabili za virtualno rešetanje knjižnic komercialno dostopnih spojin. Pri tem smo odkrili dve seriji bicikličnih zaviralcev: nove zaviralce s purinsko strukturo in nov strukturni razred s pirazolo pirimidinskim skeletom. Vezavo spojin, ki so izkazovale zaviralno aktivnost na človeški topoizomerazi IIα, smo ovrednotili še z biofizikalnimi metodami. Z metodo površinske plazmonske resonance (SPR) smo pokazali vezavo izbranega zaviralca iz obeh kemijskih razredov na ATPazno domeno in določili Kd vrednosti. Prav tako smo pokazali, da obe spojini zavirata proces razpletanja človeške topoizomeraze IIα (human topoisomerase IIα-mediated decatenation). S simulacijo molekulske dinamike (MD) smo predvidevali, katere interakcije igrajo ključno vlogo pri medmolekulskem prepoznavanju. Natančna analiza molekulske dinamike je nakazala, da je Asn120 najverjetneje ključna interakcija pri vezavi spojin v vezavno mesto za ATP. Dve spojini iz obeh strukturnih razredov sta izkazovali tudi obetavno citotoksično delovanje na celicah človeškega hepatoma (HepG2) in celični liniji adenokarcinoma dojke v fazi metastaze (MCF-7). V tretji raziskavi smo s preiskovanjem sintezne knjižnice molekul z optimiziranimi farmakoforni modeli odkrili novo serijo monocikličnih topoizomeraznih IIα zaviralcev, ki imajo v svoji strukturi 1,3,5-triazin-2(1H)-onski fragment in kažejo izboljšano zaviralno aktivnost v primerjavi z izhodnimi 1,3,5-triazini. Vezavo spojine, ki je izkazovala encimsko aktivnost, smo ovrednotili z novejšo tehniko imenovano mikrotermoforeza (MST) in potrdili vezavo spojine na ATPazno domeno ter določili tudi konstanto vezave Kd. Stabilnost interakcijskega vzorca smo študirali s simulacijo molekulske dinamike (MD). Spojina iz tega razreda pa je močneje zavirala aktivnost razpletanja človeške topoizomeraze IIα (topoisomerase IIα-mediated decatenation) močneje kot znan zaviralec tega encima - zdravilna učinkovina etopozid. Za to spojino smo tudi pokazali, da ne stabilizira kovalentnega kompleksa, zato tudi ne deluje kot topoizomerazni strup. 1,3,5-triazin-2(1H)-oni predstavljajo tudi prve monociklične katalitične zaviralce z dokazano vezavo v vezavno mesto za ATP. Pridobljeni podatki predstavljeni v tej disertaciji predstavljajo odlično izhodišče za nadaljnji razvoj novih protirakavih zdravilnih učinkovin, ki so potrebne za zdravljenje naraščajočega števila rakavih obolenj.

Language:Slovenian
Keywords:farmacevtska kemija, DNA-topoizomeraza tipa II, encimski inhibitorji, protitumorne učinkovine, načrtovanje, karakterizacija, disertacije
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[B. Pogorelčnik]
Year:2015
Number of pages:XIII, 146 str.
PID:20.500.12556/RUL-143731 This link opens in a new window
UDC:615.277.3(043.3)
COBISS.SI-ID:279351040 This link opens in a new window
Publication date in RUL:11.01.2023
Views:709
Downloads:84
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Structure-based design of novel human DNA topoisomerase II[alpha] inhibitors
Abstract:
DNA topoisomerases comprise an important family of enzymes that catalyse the induction of topological changes (e.g. relaxation/supercoiling, catenation/decatenation and knotting/unknotting) in the DNA molecule. Due to their ability to modulate the topology of the DNA molecule, DNA topoisomerases play a vital role in replication, transcription, chromosome separation and segregation, and thus represent an important collection of validated targets for novel anticancer drugs. These enzymes perform their functions by creating transient either single-stranded or double-stranded breaks in the DNA molecule. DNA topoisomerase IIα is already one of the established targets for cancer chemotherapy. Topoisomerase IIα targeting agents are classified into two groups that differ in their mechanism of action: poisons and catalytic inhibitors. Poisons stabilize the covalent cleavage complex and convert this enzyme into a cellular toxin which is lethal to normal cells. Several poisons have entered in clinical use. The other novel group of catalytic inhibitors interfere in other steps of the topoisomerase IIα catalytic cycle. Due to frequently experienced occurrence of serious side effects of these molecules during therapy, especially cardiotoxicity issues, further drug design efforts were initiated already yielding novel promising compounds than have overcome this issue and already entered into clinical studies. In this doctoral thesis we designed and experimentally evaluated new catalytic inhibitors from different chemical classes that bind to ATPase domain in human topoisomerase IIα. Design of novel topoisomerase IIα inhibitors comprised from structure-based and ligand-based pharmacophore modelling. In structure-based pharmacophore modelling we used structural information about binding of AMP-PNP molecule in the active site of enzyme, whereas in the ligand-based approach we used informations of already known active inhibitors. Both models were used to screen commercial available compounds and hits were further experimentally evaluated. Subsequently, active compounds were found to be active against human topoisomerase IIα, were evaluated for their in vitro cytotoxicity. In first research project we started from the available information about the binding of the purine-based htIIα inhibitors in the ATP binding site. We designed a virtual screening campaign combining structure-based and ligand-based pharmacophores with a molecular docking calculation searching for compounds that would contain a monocycle mimetic of the purine moiety. We discovered novel 4-amino-6-(phenylamino)-1,3,5-triazines as monocyclic htIIα inhibitors targeting the ATP binding site. To provide insight into the dynamic behavior of 4-amino-6-(phenylamino)-1,3,5-triazine, molecular dynamics (MD) simulations were initiated for the selected docked conformation of active inhibitor in the solvated human DNA topoisomerase IIα ATP active site. The most potent compound from the 1,3,5-triazine series also displayed cytotoxicity properties in hepatocellular carcinoma HepG2 cell lines. Next, in the second research project, based on the structural data about the binding mode of AMP-PNP molecule to human topo IIα, we designed a two stage virtual screening campaign combining structure-based pharmacophores and molecular docking, identifying in the first stage several mono-substituted 9H-purine compounds and a novel class of 1H-pyrazolo[3,4]pyrimidine inhibitors of the htIIα. In the second stage, bi-substituted analogues with improved properties for cell activity were discovered. Compounds from both classes were shown to inhibit htIIα-mediated decatenation and surface plasmon resonance (SPR) experiments confirmed binding of these two compounds on the htIIα ATPase domain. Proposed complexes and interaction pattern between compounds and htIIα were further analyzed in MD simulation studies. Two compounds identified in the second stage showed promising anticancer activities in hepatocellular carcinoma HepG2 and breast cancer MCF-7 cell lines. These discovered compounds represent a starting point for further hit to lead development in the anticancer drug discovery. Finally, starting from our discovered 4-amino-1,3,5-triazine inhibitors of human topoisomerase IIα we initiated a complex in silico design study of a focused library of 2,4,6-trisubstituted-1,3,5-triazines to optimize the series. 6-substituted-4-(benzylthio)-1,3,5-triazin-2(1H)-ones which were identified as novel topoisomerase IIα inhibitors. The most active compound was able to inhibit the human DNA topoisomerase IIα-mediated DNA decatenation and did not induce double-stranded breaks. Furthermore it inhibited the cleavage reaction induced by etoposide showing its inhibition step is in the early stages of topoII catalytic cycle. Binding studies using the novel microscale thermophoresis (MST) method established binding of 1,3,5-triazin-2(1H)-one compound to the htIIα ATPase domain, confirming experimentally for the first time the binding of a monocyclic catalytic inhibitors to the htIIα ATPase domain. The performed molecular dynamics (MD) simulation provided further insights into proposed molecular recognition. The discovered 6-substituted-4-(benzylthio)-1,3,5-triazin-2(1H)-ones represent the first validated monocyclic class of catalytic inhibitors that bind to the ATP binding site and have the potential for hit to lead development of a monocyclic series of catalytic inhibitors of human DNA topoisomerase IIα. All discovered compounds represent promising starting points for further development and optimization paving the way to novel, much needed, antitumor agents.


Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0012
Name:Molekulske simulacije, bioinformatika in načrtovanje zdravilnih učinkovin

Funder:Other - Other funder or multiple funders
Funding programme:Program mladih raziskovalcev
Project number:1000-10-310260

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back