izpis_h1_title_alt

Izrek o invarianci odprtih množic : delo diplomskega seminarja
ID Gornik, Tom (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (537,65 KB)
MD5: 8A88E14F9E78675256A49239E8D9C0C6

Abstract
Zveznost in diskretnost sta v mnogih pogledih povsem nasprotujoča si pojma. Kljub temu se izkaže, da lahko s pomočjo kombinatorike na diskretnih množicah dokažemo veliko lastnosti zveznih funkcij. Glavna prednost takega načina dokazovanja je, da si je postopek dokaza (vsaj v primeru, ko dimenzija ni prevelika) lahko predstavljati in celo skicirati. Pozitivne strani se pokažejo predvsem pri dokazovanju izrekov o obstoju posebnih točk, kot sta negibna točka in ničla funkcije. Primer takega izreka je Poincaré-Mirandov izrek, ki je v tem delu dokazan s pomočjo kombinatorike na ogliščih triangulacije kocke in Spernerjeve leme. Dokazano je, da Poincaré-Mirandov izrek implicira izrek o invarianci odprtih množic. Na koncu je predstavljena enostavna a pomembna posledica izreka o invarianci odprtih množic, ki jo imenujemo izrek o invarianci dimenzije.

Language:Slovenian
Keywords:simpleks, Spernerjeva lema, Poincaré-Mirandov izrek, izrek o in- varianci odprtih množic, izrek o invarianci dimenzij
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-143540 This link opens in a new window
UDC:515.1
COBISS.SI-ID:135890435 This link opens in a new window
Publication date in RUL:24.12.2022
Views:721
Downloads:99
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Domain invariance theorem
Abstract:
Continuity and discreteness are often seen as two opposing concepts, but we can use discrete combinatorics to prove many properties of continuous functions. The main benefit is that we can easily (at least when the dimension is not too large) imagine and also draw some pictures of proof. This works particularly well when we try to prove a theorem on the existence of special points of a function, for example, a fixed point or a zero of a function. One example of this sort of theorem is Poincaré-Miranda’s theorem which is proved in this work by discrete combinatorics on vertices of a triangulation of a cube and Sperner’s lemma. We can show that Poincaré-Miranda’s theorem implies the domain invariance theorem. In the end, we derive a simple but important corollary, the dimension invariance theorem.

Keywords:simplex, Sperner’s lemma, Poincaré-Miranda’s theorem, domain inva- riance theorem, dimension invariance theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back