izpis_h1_title_alt

Analiza EEG signalov
ID OMEJC, NINA (Author), ID Škrjanc, Igor (Mentor) More about this mentor... This link opens in a new window, ID Džeroski, Sašo (Comentor)

.pdfPDF - Presentation file, Download (6,71 MB)
MD5: DC9B256B3ED556F17245E0B7D0421298

Abstract
Presplošen naslov diplomske naloge, definiran na začetku poti, bi bilo bolje preoblikovati v "Avtomatsko odkrivanje modelov obsežne možganske aktivnosti", ki natančneje opiše področje obravnave. Naši možgani organizirajo vrsto funkcij, ki jih potrebujemo za učinkovito zadovoljevanje (osnovnih) življenjskih potreb. To je mogoče le z natančno koordinacijo med posameznimi možganskimi regijami. Eden izmed predlaganih mehanizmov koordinacije je sklopljenost oz. časovna sinhronizacija možganskih ritmov med lokalnimi populacijami nevronov, ki jo najpreprosteje modeliramo z omrežjem med seboj sklopljenih oscilatorjev. V diplomski nalogi nas je zanimalo, kako natančno lahko z metodama avtomatske identifikacije sistemov (ProGED in SINDy) odkrijemo tako strukturo kot parametre izbranih modelov oscilatorjev. Izbrali smo pet sistemov oscilatorjev in pet parov sklopljenih oscilatorjev. S simulacijo sistemov smo pridobili sintetične vhodne podatke, nadalje modificirane z različnimi nivoji šuma in opazljivosti. Metodi sta bili uspešni pri rekonstrukciji posameznega oscilatorja, dokler je bilo v podatkih manj kot 1 % šuma. ProGED kaže dobro rekonstrukcijo modelov tudi pri 10 % šumu, medtem ko SINDy spodleti zaradi uporabe na šum občutljivejšega numeričnega odvajanja. Iz istega razloga SINDy ne more odkrivati modelov le z delno opazljivimi podatki, medtem ko ProGED lahko, a v praksi z večjo napako rekonstrukcije. Obe metodi sta imeli tudi pri najčistejših in celovitih podatkih velike težave pri identifikaciji para sklopljenih oscilatorjev, na kar je najbolj vplivalo večje število spremenljivk stanja in neznanih parametrov. V splošnem ugotavljamo, da so trenutne implementacije klasičnih metod avtomatske identifikacije dinamičnih sistemov premalo skalabilne, da bi bile uporabne za modeliranje kompleksnejših M/EEG podatkov, kjer bi bilo vključenih več deset ali sto med seboj sklopljenih oscilatorjev z relativno veliko stopnjo šuma.

Language:Slovenian
Keywords:identifikacija dinamičnih sistemov, modeli obsežne možganske aktivnosti, ProGED, SINDy, MEG/EEG podatki, sklopljeni oscilatorji
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2022
PID:20.500.12556/RUL-143475 This link opens in a new window
COBISS.SI-ID:135103491 This link opens in a new window
Publication date in RUL:22.12.2022
Views:945
Downloads:128
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of EEG signals
Abstract:
The overly general title of the thesis, defined at the beginning of the journey, would be better reformulated to "Automatic system identification of large-scale brain activity models", which more precisely describes the scope of this work. Our brain orchestrates the various functions that we need to effectively meet (basic) life needs. This is possible only through precise coordination between individual brain regions. One of the proposed coordination mechanisms is coupling or a temporal synchronization of brain rhythms between local populations of neurons, which can be most simply modeled by a network of coupled oscillators. In the diploma thesis, we were interested in how accurately can we discover both the structure and the parameters of the selected oscillator models with the methods of automatic system identification (ProGED and SINDy). We selected ten dynamical systems, five single oscillators and five pairs of coupled oscillators. By simulating the systems, we obtained synthetic input data, further modified with different levels of noise and observability. Both methods were successful in reconstructing a single oscillator as long as there was less than 1 % noise in the data. ProGED shows good model reconstruction even at 10 % noise, while SINDy fails due to the use of more noise-sensitive numerical derivation. For the same reason, SINDy cannot detect models with only partially observable data, while ProGED can, but in practice with a larger reconstruction error. Even with the cleanest and most complete data, both methods had great difficulty in identifying a pair of coupled oscillators, which was mostly influenced by a large number of state variables and unknown parameters. Overall, we conclude that current implementations of classical automated identification methods for dynamic systems are insufficiently scalable to be useful for modeling more complex M/EEG data involving dozens or hundreds of coupled oscillators with a relatively high level of noise.

Keywords:dynamical system identification, large-scale brain activity models, ProGED, SINDy, MEG/EEG data, coupled oscillators

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back