Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Nonlocal ▫$p$▫-Kirchhoff equations with singular and critical nonlinearity terms
ID
Ghanmi, Abdeljabbar
(
Author
),
ID
Kratou, Mouna
(
Author
),
ID
Saoudi, Kamel
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(404,83 KB)
MD5: 1E4F2A3EFE1D49D631D666285DBF9C52
URL - Source URL, Visit
https://content.iospress.com/articles/asymptotic-analysis/asy221769
Image galllery
Abstract
The objective of this work is to investigate a nonlocal problem involving singular and critical nonlinearities: ▫$$\begin{cases} ([u]_{s,p}^p)^{\sigma-1}(-\Delta)^s_p u = \frac{\lambda}{u^{\gamma}}+u^{ p_s^{*}-1} & \quad \text{in }\Omega,\\ u>0, & \quad \text{in }\Omega,\\ u=0, & \quad \text{in }\mathbb{R}^{N}\setminus \Omega, \end{cases}$$▫ where ▫$\Omega$▫ is a bounded domain in ▫$\mathbb{R}^N$▫ with the smooth boundary ▫$\partial \Omega$▫, ▫$0 < s< 1<p<\infty$▫, ▫$N> sp$, $1<\sigma<p^*_s/p,$▫ with ▫$p_s^{*}=\frac{Np}{N-ps},$▫ ▫$ (- \Delta )_p^s$▫ is the nonlocal ▫$p$▫-Laplace operator and ▫$[u]_{s,p}$▫ is the Gagliardo $p$-seminorm. We combine some variational techniques with a truncation argument in order to show the existence and the multiplicity of positive solutions to the above problem.
Language:
English
Keywords:
Kirchhoff problem
,
nonlocal operator
,
variational methods
,
singular nonlinearity
,
multiplicity results
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication version:
Author Accepted Manuscript
Year:
2023
Number of pages:
Str. 125-143
Numbering:
Vol. 131, iss. 1
PID:
20.500.12556/RUL-143425
UDC:
517.956
ISSN on article:
0921-7134
DOI:
10.3233/ASY-221769
COBISS.SI-ID:
106559235
Publication date in RUL:
20.12.2022
Views:
624
Downloads:
105
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Asymptotic analysis
Shortened title:
Asymptot. anal.
Publisher:
IOS Press
ISSN:
0921-7134
COBISS.SI-ID:
25030144
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292-2022
Name:
Topologija in njena uporaba
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114-2019
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083-2018
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back