izpis_h1_title_alt

Arhimedske f-algebre : delo diplomskega seminarja
ID Strah, Manca (Author), ID Kandić, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (564,12 KB)
MD5: D6284C9DEF020A1F76B558A4672057A9

Abstract
Diplomska naloga spada v področje algebre in obravnava Rieszove prostore, pozitivne operatorje ter f-algebre. Cilj je predstaviti f-algebre in dokazati glavni izrek dela, ki pravi, da je vsaka arhimedska f-algebra komutativna. Najprej so definirani temeljni pojmi, nato je preko definicije delno urejenega vektorskega prostora definiran Rieszov prostor. Dokazana so nekatera pravila za računanje z mrežnima operacijama infimum in supremum, ki so uporabljena v več kasnejših dokazih. Vpeljan je pojem arhimedske lastnosti Rieszovega prostora in kasneje se izkaže, da je ravno arhimedska lastnost tista, ki zagotovi komutativnost f-algebre. Po obravnavi arhimedskega Rieszovega prostora sledi vpeljava pojma disjunktnosti elementov, nato pa še dveh posebnih vrst Rieszovih podprostorov, in sicer ideala in pasu. V drugem delu diplomske naloge so predstavljeni operatorji, tj. linearne preslikave med Rieszovimi prostori, ter njihove lastnosti. Definirana sta absolutna vrednost operatorja ter njegovo absolutno jedro. Predstavljene so ekvivalentne karakterizacije operatorjev, ki ohranjajo mrežni operaciji infimum in supremum. Imenujejo se Rieszovi homomorfizmi. Obravnavani so ortomorfizmi. To so pozitivni operatorji, ki so urejenostno omejeni in ohranjajo pasove. Izkažejo se za močno orodje pri dokazu glavnega izreka. Ta sledi po vpeljavi pojma f-algebre in dokazih nekaterih njihovih lastnosti. Ob koncu je zapisan in dokazan še izrek o enoličnosti enote za množenje v f-algebrah.

Language:Slovenian
Keywords:delno urejeni vektorski prostor, Rieszov prostor, pas, operator, ortomorfizem, f-algebra
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-143349 This link opens in a new window
UDC:517.9
COBISS.SI-ID:135680259 This link opens in a new window
Publication date in RUL:16.12.2022
Views:621
Downloads:100
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Archimedean f-algebras
Abstract:
This thesis falls within algebra, and it covers Riesz spaces, positive operators and f-algebras. The thesis aims to introduce f-algebras and prove the thesis's main theorem, which states that every Archimedean f-algebra is commutative. In the beginning, some crucial terms are defined so the definitions of partially ordered vector space and Riesz space can follow. Some useful identities regarding the lattice operations infimum and supremum are proved. The Archimedean property of Riesz spaces is introduced, and it later turns out it is the Archimedean property that is crucial for an f-algebra to be commutative. After studying Riesz spaces, the disjointness of two elements is defined, and two particular types of subspaces of Riesz spaces, called ideals and bands, are discussed. The second part of the thesis covers operators, i. e. linear mappings between Riesz spaces, and their properties. Modulus of an operator and its null ideal are defined. Some equivalent characterizations of lattice homomorphisms, i. e. operators that preserve lattice operations infimum and supremum, are given. Orthomorphisms are introduced. These are order bounded operators that are also band preserving. They are a powerful tool used in the proof of the main theorem of this thesis. The latter follows after the introduction of f-algebras and some of their properties. In the end, the theorem about the uniqueness of a multiplication unit in f-algebras is proved.

Keywords:partially ordered vector space, Riesz space, band, operator, orthomorphism, f-algebra

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back