izpis_h1_title_alt

Napovedovanje zasedenosti hotela z uporabo rezervacijskih oken
ID Šavli, Maj (Author), ID Guid, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,56 MB)
MD5: 45B84408DDDCFC4B2250349CF0A2A5B6

Abstract
Uspešnost večine sistemov za upravljanje prihodkov temelji na sistemu za napovedovanje povpraševanja. Bolje kot takšen sistem napoveduje povpraševanje, lažje je upravljati z omejenimi sredstvi in cenami, kar vodi do večjih prihodkov in boljšega izkoristka sredstev. V magistrskem delu predlagamo dva pristopa za napovedovanje povpraševanja, ki sta sestavljena iz enega oziroma več regresijskih modelov na podlagi rezervacijskih oken. Predlagani metodi primerjamo z vztrajnostnim modelom, statističnim modelom ARIMA in podobnim modelom iz sorodnega dela. V delu izvedemo eksperiment z domenskim ekspertom in njegove rezultate primerjamo z našima pristopoma. Metode testiramo na realnih podatkih konkretnega hotela, za katerega v delu razvijemo tudi aplikacijski programski vmesnik za pridobivanje napovedi o zasedenosti. Rezultati pokažejo, da sta predlagani metodi izmed uporabljenih najboljši, saj so napovedne napake manjše od napak ostalih metod ter napak domenskega eksperta.

Language:Slovenian
Keywords:napovedovanje zasedenosti hotela, strojno učenje, regresijski modeli, napovedovanje časovnih vrst
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-142977 This link opens in a new window
COBISS.SI-ID:136475395 This link opens in a new window
Publication date in RUL:07.12.2022
Views:760
Downloads:200
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Forecasting hotel occupancy using booking windows
Abstract:
The success of most revenue management systems is based solely on demand forecasting systems. The better such a system predicts demand, the easier it is to manage limited resources and prices, which leads to better utilization and higher revenue. In this master's thesis, we propose two different demand forecasting approaches, one of which consists of one model and the other of several regression models based on booking windows. We compare the proposed method with the persistence model, the statistical ARIMA model and a similar model from a related work. In the thesis we also conduct an experiment with a domain expert and compare his results with our approach. We test the methods on real data of a specific hotel, for which we also develop an application programming interface for obtaining demand forecasts. The results show that the proposed methods are the best among those considered, as the forecast errors are smaller than the errors of the other methods and the domain expert's errors.

Keywords:forecasting hotel occupancy, machine learning, regression models, time series forecasting

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back