Details

Pokojninske reforme v baltskih državah : diplomsko delo
ID Božič, Tilen (Author), ID Stanovnik, Tine (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/u_diplome/bozic4149.pdf This link opens in a new window

Language:Slovenian
Keywords:Litva, Latvija, Estonija, pokojninsko zavarovanje, invalidsko zavarovanje, reforme, demografija, trendi, mednarodne primerjave
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[T. Božič]
Year:2010
Number of pages:II, 47, 13 str.
PID:20.500.12556/RUL-14279 This link opens in a new window
UDC:368.914
COBISS.SI-ID:19306982 This link opens in a new window
Publication date in RUL:11.07.2014
Views:1397
Downloads:472
Metadata:XML DC-XML DC-RDF
:
BOŽIČ, Tilen, 2010, Pokojninske reforme v baltskih državah : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : T. Božič. [Accessed 31 March 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/u_diplome/bozic4149.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:Unknown
Keywords:Lithuania, Latvia, Estonia, old-age pension insurance, disability insurance, reforms, demography, trends, international comparisons

Similar documents

Similar works from RUL:
  1. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
  2. Long-term object tracking using region proposals
  3. A neural network for trench detection based on Lidar elevation model
  4. Hardware implementation of convolutional neural network on programmable device
  5. Virtual hair makeover using computer vision tools
Similar works from other Slovenian collections:
  1. Food recognition from digital images using convolutional neural networks
  2. Person age estimation based on digital images using convolutional neural networks
  3. Person activity recognition from image sequence using convolutional neural networks
  4. Time series classification based on convolutional neural networks
  5. Adversarial perturbation on neural network image recognition using an evolutionary algorithm

Back