izpis_h1_title_alt

Stabilnost superelastičnih tankostenskih lupin iz materiala z oblikovnim spominom za uporabo v elastokalorični tehnologiji
ID Porenta, Luka (Author), ID Brojan, Miha (Mentor) More about this mentor... This link opens in a new window, ID Tušek, Jaka (Co-mentor)

.pdfPDF - Presentation file, Download (48,51 MB)
MD5: D5D9427E836F8106DC62637877D04C6B

Abstract
V zadnjih letih se je elastokalorična tehnologija hlajenja (ETH), ki temelji na elastokaloričnem učinku materialov z oblikovnim spominom (MOS), uveljavila kot ena najbolj obetavnih alternativ parno-kompresijske tehnologije hlajenja. Glavna omejitev ETH je kratka življenjska doba, ki se lahko bistveno podaljša, če MOS namesto nateznemu izpostavimo tlačnemu obremenjevanju. Enega največjih izzivov pri razvoju tlačno obremenjenih elastokaloričnih naprav predstavlja iskanje kompromisa med sposobnostjo hitrega prenosa toplote, ki zahteva tankostenske elemente in strukturno (ne)stabilnostjo, na katero so takšni elementi občutljivi. Najboljši kompromis zaenkrat izkazujejo tankostenske cevi z okroglim prerezom, zato so bile osrednji predmet obravnave tega dela. Eksperimentalno smo določili stabilne dolžine cevi različnih prečnih prerezov ter izdelali dva fazna diagrama uklonskih oblik. Ugotovili smo, da temperaturne spremembe zaradi elastokaloričnega učinka zmanjšajo stabilnost. Z uporabo vmesnih podpor smo izboljšali stabilnost daljših cevi. Kot prvi smo razvili 3D lupinski končni element, ki temelji na teoriji velikih deformacij in vključuje konstitutivne enačbe za MOS. Izdelali smo numerični model za napovedovanje nestabilnosti cevi iz MOS, ki je bil verificiran s pomočjo eksperimentalnih rezultatov. Uporaba razvitega lupinskega elementa omogoča določitev odziva poljubne tankostenske strukture iz MOS, zato je njegova aplikativnost široka in se lahko uporabi tudi za načrtovanje elementov na področju medicine, avtomobilske ali letalske industrije itd.

Language:Slovenian
Keywords:strukturna stabilnost, uklon, materiali z oblikovnim spominom, lupine, superelastičnost, elastokalorični učinek
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[L. Porenta]
Year:2022
Number of pages:XXXIV, 156 str.
PID:20.500.12556/RUL-142170 This link opens in a new window
UDC:621.56/.59+624.074.43(043.3)
COBISS.SI-ID:131257347 This link opens in a new window
Publication date in RUL:22.10.2022
Views:506
Downloads:264
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stability of superelastic thin-walled shape memory alloy shells for apllications in elastocaloric technology
Abstract:
In recent years, elastocaloric cooling technology (ECT), based on the elastocaloric effect of shape memory materials (SMA), has emerged as one of the most promising alternatives to vapor compression cooling technology. The main limitation of ECT is its short fatigue life, which can be significantly improved if compressive loading is applied instead of tensile. One of the major challenges in the development of compression-loaded elastocaloric devices is to find a compromise between the capability of rapid heat transfer, which requires thin-walled structures, and the structural (in)stability to which such structures are prone. Thin-walled tubes with round cross-sections have shown the best compromise so far and have therefore been the main focus of this work. We have experimentally determined stable tube lengths of different cross-sections and defined two phase diagrams of buckling mode shapes. We found that temperature changes reduce the stability due to the elastocaloric effect. It has been shown that the use of intermediate supports increases the stability of long tubes. For the first time, a 3D shell finite element based on large deformation theory with incorporated SMA constitutive equations has been developed. A numerical model for predicting of instabilities of SMA tubes was developed and verified by the experimental results. The developed shell element can be used to model the response of arbitrary thin-walled SMA structures. Its applicability is therefore broader and can be used to design SMA components also in various branches of industry, such as medical, automotive, aerospace, etc.

Keywords:structural stability, buckling, shape memory materials, shells, superelasticity, elastocaloric effect

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back