izpis_h1_title_alt

Konstrukcija optimalnega železniškega tira po terenu : magistrsko delo
ID Gačnik, Katarina (Author), ID Jaklič, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,50 MB)
MD5: EBF420264E5005817504CFAE1818CB95

Abstract
Iskanje optimalne poti po terenu je problem s katerim se v praksi pogosto srečamo, posebej v gradbeništvu. Pri načrtovanju novih prometnih poti naletimo na več težav. Prva izmed njih je reprezentacija terena, ki je ponavadi podan z množico višinskih točk. Pogosto v ta namen uporabimo odsekoma linearne funkcije, da poiščemo ploskev, ki dane točke interpolira. Žal pa uporaba slednjih ne generira ploskve, ki bi zadoščala pogojem gladkosti zadostne stopnje, zato se bomo v prvih poglavjih naloge posvetili teoriji aproksimacije in interpolacije z gladkimi ploskvami. Naslednji temi, ki se ju bomo dotaknili, sta izbira kriterija optimalnosti ter algoritem za iskanje optimalne poti. Na koncu si bomo ogledali konkreten primer izračuna optimalne poti vlaka iz Divače v Koper, kjer bomo minimizirali prevoženo razdaljo. Iz mreže danih višinskih točk bomo z uporabo linearne interpolacije narisali relief terena, nato pa ob danih omejitvah na ploskev vrisali krivuljo optimalne poti. Pri njeni izgradnji bomo upoštevali omejitev naklona terena ter omejitev maksimalnega kota zavoja. Dobljene rezultate bomo primerjali z obstoječo progo in načrtom drugega tira.

Language:Slovenian
Keywords:triangulacija, aproksimacija, optimalna pot, Dijkstrov algoritem
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-141589 This link opens in a new window
UDC:517.5
COBISS.SI-ID:124347907 This link opens in a new window
Publication date in RUL:01.10.2022
Views:642
Downloads:47
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Construction of an optimal railway track on a terrain
Abstract:
Finding the optimal route through the terrain is a problem often encountered in practice, especially in the construction industry. Planning a new transportation route presents several challenges - one of them is an accurate representation of the terrain which is usually determined through multiple height points. The common approach uses linear spline interpolants to find a surface which interpolates the given points. The disadvantage of doing so is that interpolants aren’t smooth and don’t meet the standards required. To address this, we will first examine the theory of approximation and interpolation of smooth surfaces. Secondly, we will look into the criterion of optimality and the shortest path algorithm. Finally, we will attempt to calculate the optimal route of the train track between Divača and Koper using minimised travel distance. From a set of given points we will generate a terrain using linear spline interpolation over which we will attempt to draw the shortest path. To achieve this, the maximum allowed steepness of the terrain and the maximum allowed angle at a turn point will be used. We will then compare our results to the existing track and the current plan for the new one.

Keywords:triangulation, approximation, optimal path, Dijkstra’s algorithm

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back