izpis_h1_title_alt

An automatic individual tree 3D change detection method for allometric parameters estimation in mixed uneven-aged forest stands from ALS data
ID Spadavecchia, Claudio (Avtor), ID Belcore, Elena (Avtor), ID Piras, Marco (Avtor), ID Kobal, Milan (Avtor)

URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2072-4292/14/18/4666 Povezava se odpre v novem oknu
.pdfPDF - Predstavitvena datoteka, prenos (3,89 MB)
MD5: 87BDBDF93A91C73ADC1ECA7746991ECF

Izvleček
Forests play a central role in the management of the Earth’s climate. Airborne laser scanning (ALS) technologies facilitate the monitoring of large and impassable areas and can be used to monitor the 3D structure of forests. While the ALS-based forest measures have been studied in depth, 3D change detection in forests is still a subject of little attention in the literature due to the challenges introduced by comparing point cloud pairs. In this study, we propose an innovative methodology to (i) automatically perform a 3D change detection of forests on an individual tree level; (ii) estimate tree parameters with allometric equations; and (iii) perform an assessment of the aboveground biomass (AGB) variation over time. The area in which the tests were carried out was hit by an ice storm that occurred in the time interval between the two LiDAR acquisitions; furthermore, field measurements were carried out and used to validate the results. The single-tree segmentation of the point clouds was automatically performed with a local maxima algorithm to detect the treetop, and a decision tree method to define the individual crowns around the local maxima. The multitemporal comparison of the point clouds was based on the identification of single trees, which were matched when there was a correlation between the position of the treetops. For each tree, the DBH (diameter at breast height) and the AGB were also estimated using allometric equations. The results are promising and allowed us to identify the uprooted trees and estimate that about 40% of the AGB of the area under examination had been destroyed, with an RMSE over the estimation ranging between 4% and 21% in four scenarios.

Jezik:Angleški jezik
Ključne besede:3D change detection, forestry, light detection and ranging, LiDAR, airborne laser scanning, ALS, multitemporal analysis, remote sensing, individual tree detection, ITD
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:BF - Biotehniška fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.01.2022
Leto izida:2022
Št. strani:17 str.
Številčenje:iss. 18, art. 4666
PID:20.500.12556/RUL-140853 Povezava se odpre v novem oknu
UDK:630*58
ISSN pri članku:2072-4292
DOI:10.3390/rs14184666 Povezava se odpre v novem oknu
COBISS.SI-ID:122083331 Povezava se odpre v novem oknu
Datum objave v RUL:20.09.2022
Število ogledov:563
Število prenosov:71
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Remote sensing
Skrajšan naslov:Remote sens.
Založnik:MDPI
ISSN:2072-4292
COBISS.SI-ID:32345133 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:20.09.2022

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:daljinsko zaznavanje, LiDAR, geodetske metode, zaznavanje posameznih dreves, multitemporalna analiza, skeniranje z zračnim laserjem

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P4-0059-2020
Naslov:Gozd, gozdarstvo in obnovljivi gozdni viri

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj