izpis_h1_title_alt

Optimization in the resistant spot-welding process of AZ61 magnesium alloy
ID Afshari, Davood (Avtor), ID Ghaffari, Ali (Avtor), ID Barsum, Zuheir (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (884,09 KB)
MD5: 62998C97BF170DF66E7DE93434754EC2
URLURL - Izvorni URL, za dostop obiščite https://www.sv-jme.eu/sl/article/optimization-in-resistant-spot-welding-process Povezava se odpre v novem oknu

Izvleček
In this paper, an integrated artificial neural network (ANN) and multi-objective genetic algorithm (GA) are developed to optimize the resistance spot welding (RSW) of AZ61 magnesium alloy. Since the stability and strength of a welded joint are strongly dependent on the size of the nugget and the residual stresses created during the welding process, the main purpose of the optimization is to achieve the maximum size of the nugget and minimum tensile residual stress in the weld zone. It is identified that the electrical current, welding time, and electrode force are the main welding parameters affecting the weld quality. The experiments are carried out based on the full factorial design of experiments (DOE). In order to measure the residual stresses, an X-ray diffraction technique is used. Moreover, two separate ANNs are developed to predict the nugget size and the maximum tensile residual stress based on the welding parameters. The ANN is integrated with a multi-objective GA to find the optimum welding parameters. The findings show that the integrated optimization method presented in this study is effective and feasible for optimizing the RSW joints and process.

Jezik:Angleški jezik
Ključne besede:resistance spot welding, residual stresses, artificial neural network, genetic algorithm, AZ61 magnesium alloy
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.07.2022
Leto izida:2022
Št. strani:Str. 485-492
Številčenje:Vol. 68, no. 7/8
PID:20.500.12556/RUL-140835 Povezava se odpre v novem oknu
UDK:621.791
ISSN pri članku:0039-2480
DOI:10.5545/sv-jme.2022.174 Povezava se odpre v novem oknu
COBISS.SI-ID:121920259 Povezava se odpre v novem oknu
Datum objave v RUL:19.09.2022
Število ogledov:591
Število prenosov:73
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Strojniški vestnik
Skrajšan naslov:Stroj. vestn.
Založnik:Zveza strojnih inženirjev in tehnikov Slovenije [etc.], = Association of Mechanical Engineers and Technicians of Slovenia [etc.
ISSN:0039-2480
COBISS.SI-ID:762116 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Optimizacija postopka uporovnega točkovnega varjenja magnezijeve zlitine AZ61
Ključne besede:uporovno točkovno varjenje, preostale napetosti, umetna nevronska mreža, genetski algoritem, magnezijeva zlitina AZ61

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj