Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Segmentacija fibroze srca s pomočjo konvolucijskih avtokodirnikov
ID
ŠTUHEC, TIM
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,35 MB)
MD5: E66C721FFAB552845772BC829E0391EB
Image galllery
Abstract
V nalogi obravnavamo problem segmentacije fibroze srca. Na voljo imamo 200 simulacij MRF slik srca, med katerimi so samo 3 slike srca brez fibroze. Posnemamo realno stanje, kjer je pridobivanje segmentacij slik srca zamudno in je večina src, slikanih z magnetno resonanco, bolnih. Problema smo se lotili s pomočjo avtokodirnikov, za najboljše so se izkazali konvolucijski. Konvolucijske nevronske mreže smo uporabili na dva načina. V prvem smo s slikami poskusili rekonstruirati identične slike brez fibroze, v drugem pa smo poskusili lokalizirati samo fibrozo. Drugi način se je izkazal kot veliko uspešnejši, saj dosega dobre rezultate, medtem pa je imel prvi težave zaradi premajhnega števila slik zdravega srca. Kljub temu prva metoda odpira več možnosti za nadaljnje raziskovanje na tem področju, saj ne potrebuje slik s priloženimi segmentacijami, ampak le podatke o tem, katere slike predstavljajo zdravo srce in katere srce s fibrozo.
Language:
Slovenian
Keywords:
fibroza srca
,
konvolucijske nevronske mreže
,
avtokodirniki
,
samonadzorovano učenje
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:
2022
PID:
20.500.12556/RUL-140834
COBISS.SI-ID:
124604675
Publication date in RUL:
19.09.2022
Views:
873
Downloads:
141
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠTUHEC, TIM, 2022,
Segmentacija fibroze srca s pomočjo konvolucijskih avtokodirnikov
[online]. Bachelor’s thesis. [Accessed 17 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=140834
Copy citation
Share:
Secondary language
Language:
English
Title:
Segmentation of cardiac fibrosis with convolutional autoencoders
Abstract:
In the assignment, we deal with the problem of heart fibrosis segmentation. We have 200 MRF simulations of cardiac images available, among which only 3 cardiac images without fibrosis. We simulate a real world situation where obtaining segmentations of heart images is time-consuming and most hearts imaged with magnetic resonance are diseased. We tackled the problem with the help of autoencoders, convolutional ones turned out to be the best. We used convolutional neural networks in two ways. In the first, we tried to reconstruct identical images without fibrosis, and in the second, we tried to localize only the fibrosis. The second method turned out to be much more successful, achieving good results, while the first had its problems due to the insufficient number of images of a healthy heart. Nevertheless, the first method offers more opportunities for further research in this area, since it does not require images with attached segmentations, but only the information about, which images represent a healthy heart and which represent a heart with fibrosis.
Keywords:
cardiac fibrosis
,
convolutional neural networks
,
autoencoders
,
self-supervised learning
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back