izpis_h1_title_alt

Priporočilni sistem za aktivno pridobivanje značilk
ID MLINARIČ, GREGOR (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,99 MB)
MD5: 9A088BBA072137BEE51BD20CB9C12AF0

Abstract
Diplomska naloga se podrobneje posveča problemu manjkajočih atributov v regresijskih in klasifikacijskih problemih, ki bistveno vplivajo na napovedno napako. Napovedno napako želimo zmanjšati s priporočilnim sistemom za aktivno pridobivanje značilk. Priporočilni sistem manjkajočim značilkam napovedne množice poda njihovo oceno koristnosti in pridobi najbolj koristne. Ocena koristnosti za manjkajoče značilke temelji na matričnem razcepa preferenčne matrike, ki jo sestavimo iz izračunanih Shapleyjevih vrednosti znanih atributov. Uporabnost predlagane rešitve je evalvirana za pridobivanje manjkajočih značilk v učni in testni množici. Rezultati kažejo na to, da je uporaba predlagane rešitve bolj smiselna za pridobivanje manjkajočih značilk od naključnega dodajanja manjkajočih atributov, ni pa vedno boljša od nepersonaliziranega priporočanja.

Language:Slovenian
Keywords:aktivno pridobivanje značilk, priporočilni sistem, matrični razcep, Shapleyjeve vrednosti, manjkajoče značilke
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140833 This link opens in a new window
COBISS.SI-ID:124604419 This link opens in a new window
Publication date in RUL:19.09.2022
Views:563
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommender system for active feature acquisition
Abstract:
The thesis addresses the problem of missing features in regression and classification problems and its impact on the prediction loss. To minimise the prediction loss, a recommender system for active feature acquisition is introduced. The recommender system estimates the utility of missing features in prediction set and acquires the ones with the highest utilities. The estimates are based on a matrix decomposition of a preference matrix (the preference matrix is composed of calculated Shapley values for known attributes). The developed method is evaluated for feature acquisition on learning and testing datasets. The results indicate that the method is more effective to achieve lower prediction loss in comparison with randomly acquiring missing features. However, it is not always the case that it performs better in comparison with unpersonalised recommendations.

Keywords:active feature acquisition, recommender systems, matrix decomposition algorithms, Shapley values, missing features

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back